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PREFACE TO THE FIRST ENGLISH EDITION

THE present volume of our Theoretical Physics deals with the theory of elasticity.

Being written by physicists, and primarily for physicists, it naturally includes not only
the ordinary theory of the deformation of solids, but also some topics not usually found in
textbooks on the subject, such as thermal conduction and viscosity in solids, and various
problems in the theory of elastic vibrations and waves. On the other hand, we have
discussed only very briefly certain special matters, such as complex mathematical
methods in the theory of elasticity and the theory of shells, which are outside the scope of
this book.

Our thanks are due to Dr. Sykes and Dr. Reid for their excellent translation of the
book.

Moscow L. D. LANDAU
E. M. LiFsHITZ

PREFACE TO THE SECOND ENGLISH EDITION

AsWELL as some minor corrections and additions, a chapter on the macroscopic theory of
dislocations has been added in this edition. The chapter has been written jointly by myself
and A. M. Kosevich.

A number of useful comments have been made by G. I. Barenblatt, V. L. Ginzburg, M.
A. Isakovich, I. M. Lifshitz and I. M. Shmushkevich for the Russian edition, while the
vigilance of Dr. Sykes and Dr. Reid has made it possible to eliminate some further errors
from the English translation.

I should like to express here my sincere gratitude to all the above-named.

Moscow E. M. LiFsHITZ

PREFACE TO THE THIRD ENGLISH EDITION

THE major part of this book (Chapters I, II, III and V) is not very different from what was
in the first two English editions (1959 and 1970). This is a natural result of the fact that the
basic equations and conclusions of elasticity theory have long since been established.

The second edition included a chapter on the theory of dislocations in crystals, written
jointly with A. M. Kosevich, which has been only slightly changed in the present edition.

This new edition contains a further chapter, on the mechanics of liquid crystals, written
jointly with L. P. Pitaevski—a new branch of continuum mechanics which combines
features of liquids and elastic solids, and whose proper position in the Course of
Theoretical Physics is therefore after both fluid mechanics and elasticity of solids.

As always, I have derived much benefit from discussing with my friends and colleagues
various topics dealt with in the book. I should like to mention with gratitude the names of
V. L. Ginzburg, V. L. Indenbom, E. I. Kats, Yu. A. Kosevich, V. V., Lebedev, V. P.
Mineev and G. E. Volovik for their various comments used in preparing the book.

Moscow E. M. LiFsHITZ

vii



NOTATION

p density of matter
u displacement vector
L(ou +6u,, strain tensor
Uy =~ —4+—
k7 2\ox, | ox;

gy stress tensor
K modulus of compression

u modulus of rigidity

E Young’s modulus

o Poisson’s ratio

a longitudinal velocity of sound
¢ transverse velocity of sound

¢ and ¢, are expressed in terms of K, u or of E, ¢ by formulae given in §22.

The quantities K, y, E and ¢ are related by

E=9Ku/3K +p)

o=0BK-2u)/23K +y)

K = E/3(1 —20)

u=E/2(1 +0)

The summation convention always applies to suffixes occurring twice in vector and tensor
expressions. In Chapter VI, 9, (= d/dx;) is used to denote differentiation with respect to a
coordinate.

References to other volumes in the Course of Theoretical Physics:

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

SP | = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

FM = Vol. 6 (Fluid Mechanics, Second English edition, 1987).

ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition, 1984).
All are published by Pergamon Press.

viii



CHAPTER 1

FUNDAMENTAL EQUATIONS

§1. The strain tensor

THE mechanics of solid bodies, regarded as continuous media, forms the content of the
theory of elasticity.t

Under the action of applied forces, solid bodies exhibit deformation to some extent, i.e.
they change in shape and volume. The deformation of a body is described mathematically
in the following way. The position of any point in the body is defined by its position vector
r (with components x; = x, X, = y, X3 = z) in some coordinate system. When the body is
deformed, every pointin it is in general displaced. Let us consider some particular point; let
its position vector before the deformation be r, and after the deformation have a different
value r’ (with components x’;). The displacement of this point due to the deformation is
then given by the vector r' —r, which we shall denote by u:

u;=x;—x;. (1.1)

The vector u is called the displacement vector. The coordinates x’; of the displaced point
are, of course, functions of the coordinates x; of the point before displacement. The
displacement vector u; is therefore also a function of the coordinates x;. If the vector u is
given as a function of x;, the deformation of the body is entirely determined.

When a body is deformed, the distances between its points change. Let us consider two
points very close together. If the radius vector joining them before the deformation is dx;,
the radius vector joining the same two points in the deformed body is dx’; = dx; + du;. The
distance between the points is d = /(dx,? + dx,? + dx;?2) before the deformation, and
dI' = /(dx',% +dx’;% +dx'3?) after it. Using the general summation rule, we can write
di? = dx;?, dI'? = dx';? = (dx; +du;)% Substituting du; = (du;/dx,)dx,, we can write
Ou; 0

i dx,‘ dx,.

ou:
dI'? = di2 42 2 dx,dx, + 24
0x, 0x,

0x,

Since the summation is taken over both suffixes i and k in the second term on the right, this
term can be put in the explicitly symmetrical form

Ou; Ou,
(‘aTk + a—x—i>dx,' dxk.

In the third term, we interchange the suffixes i and [. Then di’? takes the final form
dl’z = d12+2u,~kdx,-dx,‘, (1.2)

t The basic equations of elasticity theory were established in the 1820s by Cauchy and by Poisson.

TOE-A® 1
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2 Fundamental Equations §1

where the tensor u;, is defined as

1 /au,' auk 3“, %>. (13)

= 2\ax " ax, T ax, o,

These expressions give the change in an element of length when the body is deformed.
The tensor u;, is called the strain tensor. We see from its definition that it is symmetrical,

ie.
Uy = Uy (1.4)

Like any symmetrical tensor, u;, can be diagonalized at any given point. This means that,
at any given point, we can choose coordinate axes (the principal axes of the tensor) in such
a way that only the diagonal components u,,, u,,, u33 of the tensor u; are different from
zero. These components, the principal values of the strain tensor, will be denoted by u'"),
u'®, u®_ It should be remembered, of course, that, if the tensor u;, is diagonalized at any
point in the body, it will not in general be diagonal at any other point.

If the strain tensor is diagonalized at a given point, the element of length (1.2) near it
becomes

dl'? = (8 + 2uy) dx; dx,
= (142uMydx, 2 + (1 + 2u?)dx,2 + (1 + 2u?)dx,2.

We see that the expression is the sum of three independent terms. This means that the
strain in any volume element may be regarded as composed of independent strains in three
mutually perpendicular directions, namely those of the principal axes of the strain tensor.
Each of these strains is a simple extension (or compression) in the corresponding direction:
the length dx, along the first principal axis becomes dx’', = \/ (1 +2uV)dx,, and
similarly for the other two axes. The quantity \/ (1 +2u") — 1 is consequently equal to the
relative extension (dx’; —dx;)/dx; along the ith principal axis.

In almost all cases occurring in practice, the strains are small. This means that the
change in any distance in the body is small compared with the distance itself. In other
words, the relative extensions are small compared with unity. In what follows we shall
suppose that all strains are small.

If a body is subjected to a small deformation, all the components of the strain tensor are
small, since they give, as we have seen, the relative changes in lengths in the body. The
displacement vector u;, however, may sometimes be large, even for small strains. For
example, let us consider a long thin rod. Even for a large deflection, in which the ends of the
rod move a considerable distance, the extensions and compressions in the rod itself will be
small.

Except in such special cases,f the displacement vector for a small deformation is itself
small. For it is evident that a three-dimensional body (i.e. one whose dimension in no
direction is small) cannot be deformed in such a way that parts of it move a considerable
distance without the occurrence of considerable extensions and compressions in the body.

t+ Which include, besides deformations of thin rods, those of thin plates to form cylindrical surfaces. We have
also to exclude the case where the deformation of a three-dimensional body is accompanied by a rotation through
a finite angle.



§2 The stress tensor 3

Thin rods will be discussed in Chapter I1. In other cases the u; and their derivatives are
small for small deformations, and we can therefore neglect the last term in the general
expression (1.3), as being of the second order of smallness. Thus, for small deformations,

the strain tensor is given by
1/0u; Ou,
U —§<6—x;+6—x,) (1.5)

The relative extensions of the elements of length along the principal axes of the strain
tensor (at a given point) are, to within higher-order quantities, \/(1 +2u®) — 1 ~ u", i.
they are the principal values of the tensor u;,.
Let us consider an infinitesimal volume element dV, and find its volume d V' after the
deformation. To do so, we take the principal axes of the strain tensor, at the point
considered, as the coordinate axes. Then the elements of length dx,, dx,, dx, along these
axes become, after the deformation, dx’, = (1 + u'"")dx,, etc. The volume dV is the
product dx; dx, dx;, while d¥’ is dx'; dx’; dx’s. Thus dV' =dV (1 +u?) (1 + u'?) x
x (1 + u*®). Neglecting higher-order terms, we therefore have d V' = dV (1 + u'V + u'® +
+u). The sum u' + u® + u® of the principal values of a tensor is well known to be
invariant, and is equal to the sum of the diagonal components u;; = u;, + u,, + u3; inany
coordinate system. Thus
dv’' =dv(l +uy,). (1.6)

We see that the sum of the diagonal components of the strain tensor is the relative volume
change (dV’'—dV)/dV.

It is often convenient to use the components of the strain tensor in spherical polar or
cylindrical polar coordinates. We give here, for reference, the corresponding formulae,
which express the components in terms of the derivatives of the components of the
displacement vector in the same coordinates. In spherical polar coordinatesr, 6, ¢, we have

" _ Ou, " _16u,+u, ) 1 6u¢+ t0+u,
"= Y TE0 T YT 1sin6 0 r’
1/ 0u, 1 Oy Oug u, 10u,
6=\ = — 6 - =0———+4- 1.7
Qg r(60 te €01 )+rsin0 ¢’ 2o ar r 1 roe (1.7
1 Ou, 6u¢ Uy
2ugr = rsinf 0¢ r’
In cylindrical polar coordinates r, ¢, z,
_ Oy, 1 6u¢ + _ %
= YT 7% 2 = g
10u, Ou Ou, Ou,
Ouy u, 10y,
2 =5~ Y130

§2. The stress tensor

In a body that is not deformed, the arrangement of the molecules corresponds to a state
of thermal equilibrium. All parts of the body are in mechanical equilibrium. This means



4 Fundamental Equations §2

that, if some portion of the body is considered, the resultant of the forces on that portion is
zero.

When a deformation occurs, the arrangement of the molecules is changed, and the body
ceases to be in its original state of equilibrium. Forces therefore arise which tend to return
the body to equilibrium. These internal forces which occur when a body is deformed are
called internal stresses. If no deformation occurs, there are no internal stresses.

The internal stresses are due to molecular forces, i.e. the forces of interaction between
the molecules. An important fact in the theory of elasticity is that the molecular forces have
a very short range of action. Their effect extends only to the neighbourhood of the
molecule exerting them, over a distance of the same order as that between the molecules,
whereas in the theory of elasticity, which is a macroscopic theory, the only distances
considered are those large compared with the distances between the molecules. The range
of action of the molecular forces should therefore be taken as zero in the theory of
elasticity. We can say that the forces which cause the internal stresses are, as regards the
theory of elasticity, “near-action” forces, which act from any point only to neighbouring
points. Hence it follows that the forces exerted on any part of the body by surrounding
parts act only on the surface of this part.

The following reservation should be made here. The above assertion is not valid in cases
where the deformation of the body results in macroscopic electric fields in it (pyroelectric
and piezoelectric bodies). Such bodies are discussed in ECM.

Let us consider the total force on some portion of the body. Firstly, this total force is
equal to the sum of all the forces on all the volume elements in that portion of the body, i.e.
it can be written as the volume integral | FdV, where F is the force per unit volume and
FdV the force on the volume element d V. Secondly, the forces with which various parts of
the portion considered act on one another cannot give anything but zero in the total
resultant force, since they cancel by Newton’s third law. The required total force can
therefore be regarded as the sum of the forces exerted on the given portion of the body by
the portions surrounding it. From above, however, these forces act on the surface of that
portion, and so the resultant force can be represented as the sum of forces acting on all the
surface elements, i.e. as an integral over the surface.

Thus, for any portion of the body, each of the three components | F;dV of the resultant
of all the internal stresses can be transformed into an integral over the surface. As we know
from vector analysis, the integral of a scalar over an arbitrary volume can be transformed
into an integral over the surface if the scalar is the divergence of a vector. In the present
case we have the integral of a vector, and not of a scalar. Hence the vector F; must be the
divergence of a tensor of rank two, i.e. be of the form

F, = 00,/0x,. 21

Then the force on any volume can be written as an integral over the closed surface
bounding that volume:+

t The vector df is along the normal outward from the closed surface. The integral over a closed surface is
transformed into one over the volume enclosed by the surface by replacing the surface element df by the operator
dVa/ox;.

Strictly speaking, to determine the total force on a deformed portion of the body we should integrate, not
over the old coordinates x;, but over the coordinates x’; of the points of the deformed body. The derivatives (2.1)
should therefore be taken with respect to x’;. However, in view of the smallness of the deformation, the
derivatives with respect to x; and x’; differ only by higher-order quantities, and so the derivatives can be taken
with respect to the coordinates x;.
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0
deV ﬂdv fﬁaikdfk. 2.2)

The tensor gy, is called the stress tensor. As we see from (2.2), 6, d, is the ith component
of the force on the surface element df. By taking elements of area in the planes of xy, yz, zx,
we find that the component ¢;, of the stress tensor is the ith component of the force on unit
area perpendicular to the x,-axis. For instance, the force on unit area perpendicular to the
x-axis, normal to the area (i.e. along the x-axis), is ¢, and the tangential forces (along the y
and z axes) are g,, and o,

The following remark should be made concerning the sign of the force o,df,. The
surface integral in (2.2) is the force exerted on the volume enclosed by the surface by the
surrounding parts of the body. The force which this volume exerts on the surface
surrounding it is the same with the opposite sign. Hence, for example, the force exerted by
the internal stresses on the surface of the body itselfis — §a,-,(dﬁ(, where the integral is taken
over the surface of the body and df is along the outward normal.

Let us determine the moment of the forces on a portion of the body. The moment of the
force F can be written as an antisymmetrical tensor of rank two, whose components are
F;x, — F, x;, where x; are the coordinates of the point where the force is applied.t Hence
the moment of the forces on the volume element d V' is ( F;x, — F;x;)d V, and the moment of
the forces on the whole volume is M, = f(F,-xk — F,x;)dV. Like the total force on any
volume, this moment can be expressed as an integral over the surface bounding the
volume. Substituting the expression (2.1) for F;, we find

do; 50“
— V
j( 0x, X x, X, d
00Xy — Oy X;) 0x; 0x;
————dV - g— — 0y — |dV.
[ ax, d Ti5x, ~ TMox,

In the second term we use the fact that the derivative of a coordinate with respect to itself is
unity, and with respect to another coordinate is zero (since the three coordinates are
independent variables); thus dx, /dx, = §,,, where §,, is the unit tensor. In the first term, the
integrand is the divergence of a tensor; the integral can be transformed into one over the
surface. The result is

M,

M, =§(0uxk—0k1xi)dﬁ+J(Uu—au)dV- (2.3)

The tensor M, will be an integral over the surface alone if the stress tensor is sym-
metrical:

Ok = Oki (2.4)

so that the volume integral vanishes; the basis for this important statement will be further

t The moment of the force F is defined as the vector product Fxr, and we know from vector analysis that the
components of a vector product form zn antisymmetrical tensor of rank two as written here.



6 Fundamental Equations §2

discussed at the end of the section. The moment of the forces on a portion of the body can
then be written simply as

My = J‘(Fixk_Fkxi)dV=§(6i1xk*ak1xi)dﬁ' (2.5)

It is easy to find the stress tensor for a body undergoing uniform compression from all
sides (hydrostatic compression). In this case a pressure of the same magnitude acts on every
unit area on the surface of the body, and its direction is along the inward normal. If this
pressure is denoted by p, a force — pdf; acts on the surface element df;. This force, in terms
of the stress tensor, must be o, df,. Writing —pdf; = — pd,df,, we see that the stress
tensor in hydrostatic compression is

O = — POy. (2.6)

lis non-zero components are simply equal to the pressure.

In the general case of an arbitrary deformation, the non-diagonal components of the
stress tensor are also non-zero. This means that not only a normal force but also tangential
(shearing) stresses act on each surface element. These latter stresses tend to move the
surface elements relative to each other.

In equilibrium the internal stresses in every volume element must balance, i.e. we must
have F; = 0. Thus the equations of equilibrium for a deformed body are

ao"'k/axk = 0. (2.7)

If the body is in a gravitational field, the sum F + pg of the internal stresses and the force of
gravity (pg per unit volume) must vanish; p is the densityt and g the gravitational
acceleration vector, directed vertically downwards. In this case the equations of
equilibrium are

00,4 /0%, + pg; = 0. (2.8)

The external forces applied to the surface of the body (which are the usual cause of
deformation) appear in the boundary conditions on the equations of equilibrium. Let P be
the external force on unit area of the surface of the body, so that a force P df acts on a
surface element df. In equilibrium, this must be balanced by the force — o, df; of the
internal stresses acting on that element. Thus we must have P,df— o, df, = 0. Writing
df, = n, df, where n is a unit vector along the outward normal to the surface, we find

Giknk = P.' . (2.9)

This is the condition which must be satisfied at every point on the surface of a body in
equilibrium.

We shall derive also a formula giving the mean value of the stress tensor in a deformed

body. To do so, we multiply equation (2.7) by x, and integrate over the whole volume:

doy 0(aixy) oxy .
V=——dV - g—dV =0.
jax, X d j ox, 8V |ougy 4V =0

The first integral on the right is transformed into a surface integral; in the second integral
we put 0x,/0x, = &,,. The result is $a;,x, df, — {a,, d V" = 0. Substituting (2.9) in the first

t Strictly speaking, the density of a body changes when it is deformed. An allowance for this change, however,
involves higher-order quantities in the case of small deformations, and is therefore unimportant.
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integral, we find § Px, df = [0, dV = Vd,, where V is the volume of the body and &, the
mean value of the stress tensor. Since o, = g,;, this formula can be written in the
symmetrical form

Oy = (1/2V)§(P,-x,‘+P,‘x,<)df. (2.10)

Thus the mean value of the stress tensor can be found immediately from the external forces
acting on the body, without solving the equations of equilibrium.

Let us now go back to the proof given above that the stress tensor is symmetrical, since it
is in need of refinement. The physical condition imposed, that the tensor M; be
representable as an integral over the surface alone, is satisfied not only if the
antisymmetrical part of the tensor o;; (that is, the integrand in the volume integral in (2.3))
is zero, but also if it is a divergence, i.e. if

Oix— Ok = 20004 /0%;, i = — bt (2.11)

where ¢, is any tensor antisymmetrical in the first pair of suffixes. In the present case, this
tensor is to be expressed in terms of the derivatives du;/0x,, and accordingly the stress
tensor contains terms in higher derivatives of the displacement vector. Within the theory
of elasticity as described here, all such terms should be regarded as higher-order small
quantities and omitted.

It is, however, important in principle that the stress tensor can be reduced to a
symmetrical form even if these terms are not neglected.t The reason is that the definition
(2.1) of this tensor is not unique: any transformation is possible that is of the form

Oix — O = Ot /OX1,  Xim = — Xitk» (2.12)

where y,, is any tensor antisymmetrical in the last pair of suffixes. Evidently, the
derivatives do;, /0x, and 06}, /0x,, which determine the force F, are identically equal. If the
antisymmetrical part of o, has the form (2.11), then an unsymmetrical o, can be made
symmetrical by a transformation of this type. The symmetrical tensor is

G = 30w+ 01) + (i + dui) /05 (2.13)
it is easy to see that 6, — g, has the form (2.12) with
Xikt = i + Ptk — Pisa (2.14)

(P. C. Martin, O. Parodi and P. S. Pershan 1972).

§3. The thermodynamics of deformation

Let us consider some deformed body, and suppose that the deformation is changed in
such a way that the displacement vector u; changes by a small amount du;; and let us
determine the work done by the internal stresses in this change. Multiplying the force
F, = 00,/0x, by the displacement éu; and integrating over the volume of the body, we
have _[ OR AV = [(00y/0x,)ou; dV, where 6R denotes the work done by the internal stresses
per unit volume. We integrate by parts, obtaining

o0du;
J‘éRdV = §0,~k5u,~dﬁ‘— JaikT;‘idy.
k

t In accordance with the general results of the microscopic theory (Fields, §32).
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By considering an infinite medium which is not deformed at infinity, we make the
surface of integration in the first integral tend to infinity; then g; = 0 on the surface, and
the integral is zero. The second integral can, by virtue of the symmetry of the tensor o, be

written
JéR dv = —% ja;k <%+%)dV
- —;J5(§—+3—)dv
= - Joikéuide.
Thus we find 5R = — a,0uy. G.1)

This formula gives the work R in terms of the change in the strain tensor.

If the deformation of the body is fairly small, it returns to its original undeformed state
when the external forces causing the deformation cease to act. Such deformations are said
to be elastic. For large deformations, the removal of the external forces does not result in
the total disappearance of the deformation; a residual deformation remains, so that the
state of the body is not that which existed before the forces were applied. Such
deformations are said to be plastic. In what follows (except in Chapter 1V) we shall
consider only elastic deformations.

We shall also suppose that the process of deformation occurs so slowly that
thermodynamic equilibrium is established in the body at every instant, in accordance with
the external conditions. This assumption is almost always justified in practice. The process
will then be thermodynamically reversible.

In what follows we shall take all such thermodynamic quantities as the entropy S, the
internal energy &, etc., relative to unit volume of the body, and not relative to unit mass as
in fluid mechanics, and denote them by the corresponding capital letters.

The following remark should be made here. Strictly speaking, the unit volumes before
and after the deformation should be distinguished, since they in general contain different
amounts of matter. We shall always (except in Chapter VI) relate the thermodynamic
quantities to unit volume of the undeformed body, i.e. to the amount of matter therein,
which may occupy a different volume after the deformation. Accordingly, the total energy
of the body, for example, is obtained by integrating & over the volume of the undeformed
body.

An infinitesimal change d& in the internal energy is equal to the difference between the
heat acquired by the unit volume considered and the work dR done by the internal stresses.
The amount of heat is, for a reversible process, 7dS, where T is the temperature. Thus
d& = TdS — dR; with dR given by (3.1), we obtain

. d& = TdS + U,'k duik' (3.2)

This is the fundamental thermodynamic relation for deformed bodies.

In hydrostatic compression, the stress tensor is 6, = — pd; (2.6). Then oy du, =
— pdyduy = — pdu;. We have seen, however (cf. (1.6)), that the sum u;; is the relative
volume change due to the deformation. If we consider unit volume, therefore, u;; is simply
the change in that volume, and du;; is the volume element d V. The thermodynamic relation
then takes its usual form

d& = TdS —pdV. (3.2a)
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Introducing the (Helmholtz) free energy of the body, F = & — TS, we find the form
dF = - SdT+ 0,~k d“ik (3.3)

of the relation (3.2). Finally, the thermodynamic potential (Gibbs free energy) @ is defined
as
(D= J—TS—O‘"‘ul-k= F—U,-ku,-k. (3.4)

This is a generalization of the usual expression ® = & — TS + pV.t Substituting (3.4) in
(3.3), we find
d® = —SdT — u; da,. (3.5)

The independent variables in (3.2) and (3.3) are respectively S, u, and T, u;. The
components of the stress tensor can be obtained by differentiating & or F with respect to
the components of the strain tensor, for constant entropy S or temperature T respectively:

o = (06/0uy)s = (OF [0uy)r. (3.6)

Similarly, by differentiating ® with respect to the components g, we can obtain the
components u;:
uy = — (0®/day)r- (3.7

§4. Hooke’s law

In order to be able to apply the general formulae of thermodynamics to any particular
case, we must know the free energy F of the body as a function of the strain tensor. This
expression is easily obtained by using the fact that the deformation is small and expanding
the free energy in powers of u;,. We shall at present consider only isotropic bodies. The
corresponding results for crystals will be obtained in §10.

In considering a deformed body at some temperature (constant throughout the body),
we shall take the undeformed state to be the state of the body in the absence of external
forces and at the same temperature; this last condition is necessary on account of the
thermal expansion (see §6). Then, for u;, = 0, the internal stresses are zero also,i.e. g, = 0.
Since 0, = 0F/0uy, it follows that there is no linear term in the expansion of F in powers
of u.

Next, since the free energy is a scalar, each term in the expansion of F must be a scalar
also. Two independent scalars of the second degree can be formed from the components of
the symmetrical tensor u,: they can be taken as the squared sum of the diagonal
components (u;;?) and the sum of the squares of all the components (u;2). Expanding F in
powers of u;, we therefore have as far as terms of the second order

F = Fo + %/luﬁz +ﬂu“‘2. (4.1)

This is the general expression for the free energy of a deformed isotropic body. The
quantities A and u are called Lamé coefficients.

We have seen in §1 that the change in volume in the deformation is given by the sum u;;.
If this sum is zero, then the volume of the body is unchanged by the deformation, only its
shape being altered. Such a deformation is called a pure shear.

t For hydrostatic compression, the expression (3.4) becomes ® = F + pu;; = F + p(V — V), where V — V, is
the volume change resulting from the deformation. Hence we see that the definition of ® used here differs by a
term —pV, from the usual definition ® = F +pV.
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The opposite case is that of a deformation which causes a change in the volume of the
body but no change in its shape. Each volume element of the body retains its shape also.
We have seen in §1 that the tensor of such a deformation is u;, = constant x §;,. Such a
deformation is called a hydrostatic compression.

Any deformation can be represented as the sum of a pure shear and a hydrostatic
compression. To do so, we need only use the identity

wy = (U — 30uuy) + $0uuy. @2

The first term on the right is evidently a pure shear, since the sum of its diagonal terms is
zero (6;; = 3). The second term is a hydrostatic compression.

As a general expression for the free energy of a deformed isotropic body, it is convenient
to replace (4.1) by another formula, using this decomposition of an arbitrary deformation
into a pure shear and a hydrostatic compression. We take as the two independent scalars of
the second degree the sums of the squared components of the two terms in (4.2). Then F
becomest

F = p(uy —$6,uy)* +4 Kuy®. 4.3)

The quantities K and u are called respectively the bulk modulus or modulus of hydrostatic
compression (or simply the modulus of compression) and the shear modulus or modulus of
rigidity. K is related to the Lamé coefficients by

K =2+%u. (4.4)

In a state of thermodynamic equilibrium, the free energy is a minimum. If no external
forces act on the body, then F as a function of u;, must have a minimum for u; = 0. This
means that the quadratic form (4.3) must be positive. If the tensor u;, is such that u, = 0,
only the first term remains in (4.3); if, on the other hand, the tensor is of the form
u, = constant x d,, then only the second term remains. Hence it follows that a necessary
(and evidently sufficient) condition for the form (4.3) to be positive is that each of the
coefficients K and u be positive. Thus we conclude that the moduli of compression and
rigidity are always positive:

K>0u>0. 4.5)

We now use the general thermodynamic relation (3.6) to determine the stress tensor. To
calculate the derivatives 0F/0u,, we write the total differential dF (for constant
temperature):

dF = Kuy duy + 2p(uy — $uydy) d(uy — $uydy).

In the second term, multiplication of the first parenthesis by 6, gives zero, leaving dF
= Kuyduy + 2u (uy —%u, 6 ) duy,, or writing duy, = 8, duy,

dF = [Kuy 6+ 2p(uy — $u,6,)] duyy.

Hence the stress tensor is
o = Kuydy + 2pu(uy — $6,uy). (4.6)

This expression determines the stress tensor in terms of the strain tensor for an isotropic
body. It shows that, if the deformation is a pure shear or a pure hydrostatic compression,
the relation between o, and u, is determined only by the modulus of rigidity or of
hydrostatic compression respectively.

t The constant term Fj is the free energy of the undeformed body, and is of no further interest. We shall
therefore omit it, for brevity, taking F to be only the free energy of the deformation (the elastic free energy, as it is
called).
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Itis not difficult to obtain the converse formula which expresses u; in terms of ;. To do
so, we find the sum ¢;; of the diagonal terms. Since this sum is zero for the second term of
(4.6), we have o; = 3Ku,;, or

u“ = G,',-/3K. (47)
Substituting this expression in (4.6) and so determining u;, we find
uy = 6u0u /9K + (04 —$0:0,) /21, 4.8)

which gives the strain tensor in terms of the stress tensor.

Equation (4.7) shows that the relative change in volume (u;;) in any deformation of an
isotropic body depends only on the sum o;; of the diagonal components of the stress
tensor, and the relation between u; and o;; is determined only by the modulus of
hydrostatic compression. In hydrostatic compression of a body, the stress tensor is
o = — pd,;. Hence we have in this case, from (4.7),

u; = —p/K. 4.9)

Since the deformations are small, u; and p are small quantities, and we can write the ratio
u;;/p of the relative volume change to the pressure in the differential form (1/V')(0V/dp);.

Thus

1 1 /oV

K Vv ( op )T.
The quantity 1/K is called the coefficient of hydrostatic compression (or simply the
coefficient of compression).

We see from (4.8) that the strain tensor u;, is a linear function of the stress tensor ;.
That is, the deformation is proportional to the applied forces. This law, valid for small
deformations, is called Hooke’s law.t

We may give also a useful form of the expression for the free energy of a deformed body,

which is obtained immediately from the fact that F is quadratic in the strain tensor.
According to Euler’s theorem, u;,0F/du; = 2F, whence, since 0F /0u;, = o;,, we have

F =4o,u;. (4.10)

If we substitute in this formula the u;, as linear combinations of the components o;,, the
elastic energy will be represented as a quadratic function of the o;. Again applying Euler’s
theorem, we obtain ¢, 0F/da; = 2F, and a comparison with (4.10) shows that

ui,‘ = 617/60',1‘. (411)

It should be emphasized, however, that, whereas the formula o¢;, = 0F/0u, is a general
relation of thermodynamics, the inverse formula (4.11) is applicable only if Hooke’s law is
valid.

§5. Homogeneous deformations

Let us consider some simple cases of what are called homogeneous deformations, i.e.
those in which the strain tensor is constant throughout the volume of the body.t For

t Hooke’s law is actually applicable to almost all elastic deformations. The reason is that deformations usually
cease to be elastic when they are still so small that Hooke’s law is a good approximation. Substances such as
rubber form an exception.

3 The six components of the tensor u,, are not entirely independent, since they are expressed in terms of the
derivatives of only three independent functions, the components of the vector u (see §7, Problem 9). But the six
constants ;, can in principle be specified arbitrarily.
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example, the hydrostatic compression already considered is a homogeneous deformation.

We first consider a simple extension (or compression) of a rod. Let the rod be along the
z-axis, and let forces be applied to its ends which stretch it in both directions. These forces
act uniformly over the end surfaces of the rod; let the force on unit area be p.

Since the deformation is homogeneous, i.e. u; is constant through the body, the stress
tensor o, is also constant, and so it can be determined at once from the boundary
conditions (2.8). There is no external force on the sides of the rod, and therefore o,n, = 0.
Since the unit vector n on the side of the rod is perpendicular to the z-axis, i.e. n, = 0, it
follows that all the components o, except g,, are zero. On the end surface we have
Oy = p, Or 0;; = P.

From the general expression (4.8) which relates the components of the strain and stress
tensors, we see that all the components u;, with i # k are zero. For the remaining
components we find

. 11 1 RN 61
=Uu = - —-—"—- ==\ - . .
x Uy = 7305, T3k )P =T33k TR )P

The component u,, gives the relative lengthening of the rod. The coefficient of pis called
the coefficient of extension, and its reciprocal is the modulus of extension or Young’s
modulus, E:

u,. = p/E, (5.2)
where
E=9Ku/(3K + p). (5.3)

The components u,, and u,, give the relative compression of the rod in the transverse
direction. The ratio of the transverse compression to the longitudinal extension is called
Poisson’s ratio, a1
U, = —0U,,, (54)
where
o =403K-2u)/(K +p). (5.5)

Since K and p are always positive, Poisson’s ratio can vary between —1 (for K = 0) and
1 (for u = 0). Thust

-1<o<i (5.6)
Finally, the relative increase in the volume of the rod is

The free energy of a stretched rod can be obtained immediately from formula (4.10). Since
only the component o,, is not zero, we have F = 40,,u,,, whence

F = p*/2E. (5.8)

t+ The use of o to denote Poisson’s ratio and a;, to denote the components of the stress tensor cannot lead to
ambiguity, since the latter always have suffixes.

t In practice, Poisson’s ratio varies only between 0 and 4. There are no substances known for whichs < 0, i.e.
which would expand transversely when stretched longitudinally. It may be mentioned that the inequality ¢ > 0
corresponds to 4 > 0, where 4 is the Lamé coefficient appearing in (4.1); in other words, both terms in (4.1), as well
asin (4.3), are always positive in practice, although this is not thermodynamically necessary. Values of o close to 4
(e.g. for rubber) correspond to a modulus of rigidity which is small compared with the miodulus of compression.
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In what follows we shall, as is customary, use E and o instead of K and u. These and the

second Lamé coefficient are given in terms of E and ¢ by
A= Eo/(1 —20)(1 +0),
(5.9
u = E2(1 +0), K = E/3(1 —20).

We shall write out here the general formulae of §4, with the coefficients expressed in terms
of E and o. The free energy is

E c
F = 22 - 2. :
n1+ﬂ<“*+1—2a”‘> (5.10)
The stress tensor is given in terms of the strain tensor by
E (uat % ws 5.11
Oy = u; i |- .
k= T 1o \“* T 1 2g Uik ( )
Conversely,
uy = [(1 +0)oy — 00,6, ]/E. (5.12)

Since formulae (5.11) and (5.12) are in frequent use, we shall give them also in component
form:

E
XX T T L N1 A 1- xx zz) b
o (l+o)(l—20)[( o, +0a(u, +u,)]
E
0,y = ———————[(1 = o)u,, + o(u,, +u,)],
(1 +0)(1 - 20) ) (5.13)
E
TRy TR Y 1- 2z xx ’
g, 170 (1=20) [(1 = o)u,, +0o(u., +u,)]
ag E u ag E u E
=71 - y Oxz = 77— Uygy, Oy = Uy,
o1+ ¥ l+o ST Y
and conversely
1
Uy = —E_ [axx - 0'(0'”. + azz)]’
1
“yy = E [Uyy - a(axx + azz)]y
L (5.14)
u,, = E [Uu - a(axx + oyy)]v
l+o l+o l+o
Uy = Taxy’ Uy, = -E—axzv uyz = Tayz-

Let us now consider the compression of a rod whose sides are fixed in such a way that
they cannot move. The external forces which cause the compression of the rod are applied
to its ends and act along its length, which we again take to be along the z-axis. Such a
deformation is called a unilateral compression. Since the rod is deformed only in the z-
direction, only the component u,, of u; is not zero. Then we have from (5.11)

E E(l —o0)

I+ (1=20"" "=~ Ut (1-20 "

Oxx = ayy =
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Again denoting the compressing force by p (4,, = p, which is negative for a compression),
we have

The coefficient of p is called the coefficient of unilateral compression. For the transverse
stresses we have

0, =0, =pc/(l—oa). (5.16)
Finally, the free energy of the rod is
F = p*(1 +0)(1 — 20)/2E(1 — o). (5.17)

§6. Deformations with change of temperature

Let us now consider deformations which are accompanied by a change in the
temperature of the body; this can occur either as a result of the deformation process itself,
or from external causes.

We shall regard as the undeformed state the state of the body in the absence of external
forces at some given temperature T, . If the body is at a temperature T different from T,
then, even if there are no external forces, it will in general be deformed, on account of
thermal expansion. In the expansion of the free energy F(T), there will therefore be terms
linear, as well as quadratic, in the strain tensor. From the components of the tensor u;,, of
rank two, we can form only one linear scalar quantity, the sum u; of its diagonal
components. We shall also assume that the temperature change 7' — T,, which accompanies
the deformation is small. We can then suppose that the coefficient of u;; in the expansion of
F (which must vanish for T = T,)is simply proportional to the difference T— T,,. Thus we
find the free energy to be (instead of (4.3))

F(T) = Fo(T) — Ka(T — To)uy + p(u; "%‘Sik“u)z +%K“uz» (6.1)

where the coefficient of T — T, has been written as — Ka. The quantities y, K and « can
here be supposed constant; an allowance for their temperature dependence would lead to
terms of higher order.

Differentiating F with respect to u;,, we obtain the stress tensor:

ou = — Ka(T—To)dy + Kuydyy + 2u(uy — $6,uy). (6.2)

The first term gives the additional stresses caused by the change in temperature. In free
thermal expansion of the body (external forces being absent), there can be no internal
stresses. Equating o, to zero, we find that u;, is of the form constant x §,,, and

uy = (T —T,). (6.3)

But u, is the relative change in volume caused by the deformation. Thus « is just the
thermal expansion coefficient of the body.

Among the various (thermodynamic) types of deformation, isothermal and adiabatic
deformations are of importance. In isothermal deformations, the temperature of the body
does not change. Accordingly, we must put T =T, in (6.1), returning to the usual
formulae; the coefficients K and u may therefore be called isothermal moduli.

A deformation is adiabatic if there is no exchange of heat between the various parts of
the body (or, of course, between the body and the surrounding medium). The entropy S
remains constant. It is the derivative —O0F/0T of the free energy with respect to
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temperature. Differentiating the expression (6.1), we have as far as terms of the first order
in u;,
S(T) = So(T) + Kouy,. (6.4)

Putting S constant, we can determine the change of temperature 7— T, due to the
deformation, which is therefore proportional to u,:

C(T—To)/To = — Kauy,. (6.5)

Substituting this expression for T — T, in (6.2), we obtain for ¢, an expression of the usual
kind,
O = Kagquudi + 2 (uy — $0,uy), (6.6)

with the same modulus of rigidity u but a different modulus of compression K,4. The
relation between the adiabatic modulus K, 4 and the ordinary isothermal modulus K can
also e found directly from the thermodynamic formula

<6V> _(6V> +T((3V/('5T)p2
op Js op)r C, ’

where C, is the specific heat per unit volume at constant pressure. If V is taken to be the
volume occupied by matter which before the deformation occupied unit volume, the
derivatives 0V/0T and 0 V//0p give the relative volume changes in heating and compression
respectively. That is,

@V/T), =, (V/p)s= —1/K,q, (@V/0p)r= —1/K.

Thus we find the relation between the adiabatic and isothermal moduli to bet

I/Kad = I/K b Taz/Cp, Hag = H. (67)
For the adiabatic Young’s modulus and Poisson’s ratio we easily obtain
E o+ ETa?/9C,

Ead (68)

T 1-ETe?9C,” T 1-ET«’/5C,
In practice, ET«?/C,, is usually small, and it is therefore sufficiently accurate to put
E. = E+E*T«*/9C,, 0.4 =0+ (1 +0)ETa?/9C,. (6.9)

In isothermal deformation, the stress tensor is given in terms of the derivatives of the
free energy:
oy = (OF [Ouy)r.

For constant entropy, on the other hand, we have (see (3.6))
O = (08/0uy)s,

where & is the internal energy. Accordingly, the expression analogous to (4.3) determines,
for adiabatic deformations, not the free energy but the internal energy per unit volume:

€ =1 K qu? + pluy — Yuydu)?. (6.10)

t To derive these formulae from (6.5) and (6.6), we should have to use also the thermodynamic formula
C,-C,=Ta’K.
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§7. The equations of equilibrium for isotropic bodies

Let us now derive the equations of equilibrium for isotropic solid bodies. To do so, we
substitute in the general equations (2.7)

004/0x, + pgi = 0
the expression (5.11) for the stress tensor. We have

0oy Eo %+ E  Ouy
ax, (1+06)(1-20)0x, 1+a 0x,

_ Lo om
e =2\ ox, " ax, )’

we obtain the equations of equilibrium in the form
E %y N E 0%y
2(1 +0)dx,2  2(1 +0) (1 — 20) dx,0x,

Substituting

+pg; = 0. (7.1)

These equations can be conveniently rewritten in vector notation. The quantities 02u;/dx,?
are components of the vector Aw, and du,/0x, = div u. Thus the equations of equilibrium
become

2(14+0)

graddivu = —pg . (7.2)

ey E

It is sometimes useful to transform this equation by using the vector identity
graddivu = Au+ curl curlu. Then (7.2) becomes

1-2¢
ddivu—
graddivu 2 —0)

_ (1+0)(1-20)
= pg—iﬁt;r—- (7.3)

curl curlu

We have written the equations of equilibrium for a uniform gravitational field, since this
is the body force most usually encountered in the theory of elasticity. If there are other
body forces, the vector pg on the right-hand side of the equation must be replaced
accordingly.

A very important case is that where the deformation of the body is caused, not by body
forces, but by forces applied to its surface. The equation of equilibrium then becomes

(1-20)Au+graddivu =0 (7.4)
or
2(1 —o)graddivu— (1 — 20)curl curlu = 0. (7.5)

The external forces appear in the solution only through the boundary conditions.
Taking the divergence of equation (7.4) and using the identity

div grad = A,
we find
A divu =0, (7.6)

i.e. divu (which determines the volume change due to the deformation) is a harmonic
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function. Taking the Laplacian of equation (7.4), we then obtain
AAu=0, (7.7

i.e. in equilibrium the displacement vector satisfies the biharmonic equation. These results
remain valid in a uniform gravitational field (since the right-hand side of equation (7.2)
gives zero on differentiation), but not in the general case of external forces which vary
through the body.

The fact that the displacement vector satisfies the biharmonic equation does not, of
course, mean that the general integral of the equations of equilibrium (in the absence of
body forces) is an arbitrary biharmonic vector; it must be remembered that the function
u(x, y, z) also satisfies the lower-order differential equation (7.4). It is possible, however, to
express the general integral of the equations of equilibrium in terms of the derivatives of an
arbitrary biharmonic vector (see Problem 10).

If the body is non-uniformly heated, an additional term appears in the equation of
equilibrium. The stress tensor must include the term

— Koa(T —Ty)di
(see (6.2)), and dao,,/0x, accordingly contains a term
— KadT/ox; = —[Ea/3(1 —20)]0T/0x;.
The equation of equilibrium thus takes the form

g(Tl:——ai) graddivu — H curlcurlu = a grad 7. (7.8)
Let us consider the particular case of a plane deformation, in which one component of
the displacement vector (u,) is zero throughout the body, while the components u,, u,
depend only on x and y. The components u,,, u,,, u,, of the strain tensor then vanish
identically, and therefore so do the components a,,, g,, of the stress tensor (but not the
longitudinal stress o,,, the existence of which is implied by the constancy of the length of
the body in the z-direction).t
Since all quantities are independent of the coordinate z, the equations of equilibrium (in
the absence of external body forces) do;,/0x, = 0 reduce in this case to two equations:

do,, da,, do,, Oo,
= 2 =0 =42 =0 79
ax dy T ox + dy (7.9)

The most general functions o,,, 0., g,, satisfying these equations are of the form
G, = 0%x/0y?, O,y = — 02x/dx0y, a,, = 0%3/0x?, (7.10)

where y is an arbitrary function of x and y. It is easy to obtain an equation which must be
satisfied by this function. Such an equation must exist, since the three quantities g,,, g,,,
o,, can be expressed in terms of the two quantities u,, u,, and are therefore not
independent. Using formulae (5.13), we find, for a plane deformation,

0. +0,, = E(u,+u,)/(1+0)(1-20)

t The use of the theory of functions of a complex variable provides very powerful methods of solving plane
problems in the theory of elasticity. See N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of
Elasticitv, 2nd English ed., P. Noordhoff, Groningen 1963.
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But

Oux+0,, =00 Uy +uy,=——

and, since by (7.6) div u is harmonic, we conclude that the function y satisfies the equation
ANy =0, (7.11)

1.e. it is biharmonic. This function is called the stress function. When the plane problem has
been solved and the function y is known, the longitudinal stress o, is determined at once
from the formula

0,; = 6E(u,,+u,)/(1+0)(1 —20) = o(0,, +0,),
or
0,,=aly. (7.12)

PROBLEMS

PROBLEM 1. Determine the deformation of a long rod (with length /) standing vertically in a gravitational
field.

SoLUTION. We take the z-axis along the axis of the rod, and the xy-plane in the plane of its lower end. The
equations of equilibrium are do,,/0x; = d0,,/0x; = 0, da,;/0x; = pg. On the sides of the rod all the components
g, except o, must vanish, and on the upper end (z = I) 0., = g,, = g,, = 0. The solution of the equations of
equilibrium satisfying these conditions is g,, = — pg(l — z), with all other o, zero. From o;, we find u,, to be u,,
=u,, = opg(l—2)/E,u,, = — pg(l - 2)/E,u,, = u,, = u,, = 0,and hence by integration we have the components
of the displacement vector, u, = apg(l - z)x/E, u, = opg(l - z2)y/E, u, = — (pg/2E)}{I* — (I — 2)* — a(x? + y*)}.
The expression for u, satisfies the boundary condition u, = 0 only at one point on the lower end of the rod. Hence
the solution obtained is not valid near the lower end.

PrROBLEM 2. Determine the deformation of a hollow sphere (with external and internal radii R, and R,) with
a pressure p, inside and p, outside.

SoLUTION. We use spherical polar coordinates, with the origin at the centre of the sphere. The displace-
ment vector u is everywhere radial, and is a function of r alone. Hence curlu = 0, and equation (7.5) becomes
graddivu = 0. Hence

= constant = 3aq,
or u = ar +b/r®. The components of the strain tensor are (seec formulae (1.7)) u,, = a —2b/r>, ugy = Uyy =
a+ b/r3. The radial stress is
E (1 = ), + 20upe} E 2E b
=—{(1 -0y, OUgg} = ———a— —— —.
(1+0)(1-20) " T 1-20 l+ar?

The constants a and b are determined from the boundary conditions: 6,, = —p, at r = R,, and 7,, = —p, at
r = R,. Hence we find

a"

PR’ —paR,* 1-20 b RRA(py—py) 140
a= . s = . )
R;*—R,;? E R;*—R;? 2E

For example, the stress distribution in a spherical shell with a pressure p, = pinsideand p, = O outside is given

by
. =LR*’__<1_5£) =0 =Ln’_<,+"_z’>,
" RP-R;? ) YT TR T RA-RAU 2
For a thin spherical shell with thickness h = R, — R, < R we have approximately
u = pR*(1 — 0)/2Eh, Go = 04y = 4pR/h, g, =4p,
where 4,, is the mean value of the radial stress over the thickness of the shell.
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The stress distribution in an infinite elastic medium with a spherical cavity (with radius R) subjected to
hydrostatic compression is obtained by putting R, = R, R, = o0, p, =0, p, = p:

R3? R?
o,,=—p<l——r—)), a,.=a“=—p(l+—27§).

At the surface of the cavity the tangential stresses 6,9 = 0,, = — 3p/2, i.e. they exceed the pressure at infinity.

PrOBLEM 3. Determine the deformation of a solid sphere (with radius R) in its own gravitational field.

OLUTION. The force of gravity on unit mass in a spherical body is —gr/R. Substituting this expression in
place of g in equation (7.3), we obtain the following equation for the radial displacement:

E(l-0) d <l d(rzu)>_ r
(1+0)(1-20)dr\r* dr / "R

PIg:
The solution finits for r = 0 which satisfies the condition o,, =0 forr = R is
_ _4pR(1-20)(1 +0)r(3_—g_i>
10E(1 — o) l+0 R?*)
It should be noticed that the substance is compressed (u,, < 0) inside a spherical surface of radius

RJ{(3-—a)/3(l+a)} and stretched outside it (u,, > 0). The pressurc at the centre of the sphere is
(3—0a)gpR/10(1 —a).

PROBLEM 4. Determine the deformation of a cylindrical pipe (with external and internal radii R, and R)),
with a pressure p inside and no pressure outside.t

SoLuTION. We use cylindrical polar coordinates, with the z-axis along the axis of the pipe. When the pressure
is uniform along the pipe, the deformation is a purely radial displacement u, = u(r). Similarly to Problem 2, we
have

X 1 d(ru)
dive = - —— = constant = 2a.
r dr

Hence u = ar + b/r. The non-zero components of the strain tensor are (see formulac (1.8)) u,, = du/dr = a - b/r?,

u,y = u/r = a+b/r*. From the conditions 0,, =0 at r = R,, and 5,, = —p at r = R, we find
PRI (1+0)(1 -20) PR,IR;? 140
a= - , p=—1t"2 ._
R, —-R,? E R,’-R,? E

The stress distribution is given by the formulae

I’Rl2 (1 Rzz> Pklz <1+Rzl)
[ — —_ N g = — —_— N
R, —R,? r? #  R,2-R;? r

Oy = 2paR‘Z/(Rzl - Rll)'

o"' =

PROBLEM 5. Determine the deformation of a cylinder rotating uniformly about its axis.

SoLUTION. Replacing the gravitational force in (7.3) by the centrifugal force pQ?r (where Q is the angular
velocity), we have in cylindrical polar coordinates the following equation for the displacement u, = u(r):

E(l — o) d (l d(ru)) ,Z

_ — | - = — pQ’r.
(1+0)(1 =20)dr \r dr

The solution which is finite for r = 0 and satisfies the condition 5,, =0 for r = R is
_ P (1 +0)(1 —20)
T 8E(1-o)

r((3-20)R*-r%].

PROBLEM 6. Determine the deformation of a non-uniformly heated sphere with a spherically symmetrical
temperature distribution.

t In Problems 4, 5 and 7 it is assumed that the length of the cylinder is maintained constant, so that there is no
longitudinal deformation.
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SoLuUTION. In spherical polar coordinates, equation (7.8) for a purely radial deformation is
d (1 d(r’u)) 1+0 dT
— =a

ar\r? dr 3(1-a)dr’
The solution which is finite for r = 0 and satisfies the condition o,, =0 for r = R is
r R
l+o 1 2(1-20) r
u=a T {’—2 J.T(r)rzdr+l—+6—-R—3 j T(r)r’dr}.
"] ']

The temperature T(r) is measured from the value for which the sphere, if uniformly heated, is regarded as
undeformed. In the above formula the temperature in question is taken as that of the outer surface of the sphere,
so that T(R) = 0.

PROBLEM 7. The same as Problem 6, but for a non-uniformly heated cylinder with an axially symmetrical
temperature distribution.

SOLUTION. We similarly have in cylindrical polar coordinates
r

R

= H”{‘jn dr+(1-2 'Ir d}

“_a3(l—a) Z ryrdr + ( U)F (r)rdr ;.
o

[}

PrOBLEM 8. Determine the deformation of an infinite elastic medium with a given temperature distribution
T(x, y, z) which is such that the temperature tends to a constant value T, at infinity, there being no deformation
there.

SoLuTioN. Equation (7.8) has an obvious solution for which curlu = 0 and
divu = a(l +0)[T(x, y, 2) — T9]/3(1 — o).
The vector u, whose divergence is a given function defined in all space and vanishing at infinity, and whose curl is
zero identically, can be written, as we know from vector analysis, in the form

1 div u(x, ', 7'
u(x, y,z) = —ngd‘[wdl/'

’

’
where

r= \/{(x —xV+(y-y)P+E-2)}
We therefore obtain the general solution of the problem in the form

a(l +0) T -T,
= —_— — 4V
N lZn(l—a)g"dJ‘ r v, )

where T" = T(x, y', 2).

If a finite quantity of heat q is evolved in a very small volume at the origin, the temperature distribution can be
written T — T, = (g/C)é(x)d(y)d(z), where C is the specific heat of the medium. The integral in (1) is then ¢/Cr, and
the deformation is given by

a(l+ao)g r
U= e
12n(1 —o)C r?
PROBLEM 9. Derive the equations of equilibrium for an isotropic body (in the absence of body forces) in terms
of the components of the stress tensor.
SoLuTiON. The required system of equations contains the three equations
00,/0x, =0 (1)

and also the equations resulting from the fact that the six different components of u;, are not independent
quantities. To derive these equations, we first write down the system of differential relations satisfied by the
components of the tensor u;,. It is easy to see that the quantities

1 (614,- 6u,,)
Uy = —| — + —
«=3\ox, T ox,
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satisfy identically the relations
Puy  u,  uy  Pu,,
0x,0x,  0x;0x, 0x,0x, 0Ox;0x,

Here there are only six essentially different relations, namely those corresponding to the following values of i, k, I,
m:1122,1133,2233,1123,2213, 3312. All these are retained if the above tensor equation is contracted with respect
to ! and m:

. 0%u, 0%u, N %uy, )
Dla dx;0x, 0x,0x, 0x,0x, @

Substituting here u,, in terms of o, according to (5.12) and using (1), we obtain the required equations:

ooy
(l+0)Aou+——=0. 3)
0x; 0x,
These equations remain valid in the presence of external forces constant throughout the body.
Contracting equation (3) with respect to the suffixes i and k, we find that Aag, =0, i.e. g, is a harmonic
function. Taking the Laplacian of equation (3), we then find that A Aoy, =0, i.e. the components o, are
biharmonic functions. These results follow also from (7.6) and (7.7), since o;, and u, are linearly related.

ProBLEM 10. Express the general integral of the equations of equilibrium (in the absence of body forces) in
terms of an arbitrary biharmonic vector. (B. G. Galerkin 1930).

SoLuTION. It is natural to seek a solution of equation (7.4) in the form
u= Af+Agraddivf
Hence divu = (1 + A)div Af. Substituting in {7.4), we obtain
(1=20)ANT+[2(1 —0)A + 1] grad div Af = 0.

From this we see that, if f is an arbitrary biharmonic vector (A Af = 0), then

1
= AM————grad divf.
u=A 2 _a)gn iv

PrOBLEM 11. Express the stresses o,,, 044, 0,4 for a plane deformation (in polar coordinates r, ¢) as
derivatives of the stress function.

SoLuTION. Since the required expressions cannot depend on the choice of the initial line of ¢, they do not
contain ¢ explicitly. Hence we can proceed as follows: we transform the Cartesian derivatives (7.10) into
derivatives with respect to r, ¢, and use the results that 6,, = (0,)¢ = 0. 0g¢ = (0,,) = 0./ = (0,,)4 = 0, the angle
¢ being measured from the x-axis. Thus

1oy 1% % 6(1 61)

— G = ——

=- 2455 ==3 o
el W o¢? Tee = 50 ¢ or \r d¢

PROBLEM 12. Determine the stress distribution in an infinite elastic medium containing a spherical cavity and
subjected to a homogeneous deformation at infinity.

SOLUTION. A general homogeneous deformation can be represented as a combination of a homogeneous
hydrostatic extension (or compression) and a homogeneous shear. The former has been considered in Problem 2,
so that we need only consider a homogeneous shear.

Let 0,,'® be the homogeneous stress field which would be found in all space if the cavity were absent: in a pure
shear ¢,/ = 0. The corresponding displacement vector is denoted by u‘®, and we seek the required solution in
the form u = u'® + u‘"), where the function u*’ arising from the presence of the cavity is zero at infinity.

Any solution of the biharmonic equation can be written as a linear combination of centrally symmetrical
solutions and their spatial derivatives of various orders. The functions r2, r, 1, 1/r are independent centrally
symmetrical solutions. Hence' the most general form of a biharmonic vector u'!’, depending only on the
components of the constant tensor ¢,'® as parameters and vanishing at infinity, is

u M = Ao, (O)i(l)+ Bo,\® - a (£)+C”u(°)——‘a3 r. )
' oo \r M 0x;0x, 0%, \r 0x; 0x, 0x,

Substituting this expression in equation (7.4), we obtain

o*u; 0 Oy a3 1
-20)— +— — =[2(1 - 20)]C + (A +20))0,'® ————- =0,
(t=20) ox;? + 0x,; 0x, [ oK +(4+20)oy 0x; 0x, 0x, r
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whence A = —4C(1 — o). Two further relations between the constants A, B, € are obtained from the condition at

the surface of the cavity: (0,'” + 6,!")n, = 0 for r = R (R being the radius of the cavity, the origin at its centre,
and n a unit vector parallel to r). A somewhat lengthy calculation, using (1), gives the following values:

B = CRY/5, C = 5R%(1 + 6)/2E(7 ~ 50).

The final expression for the stress distribution is

5(1 -20) R)3 3 (R)5
a = 0,'¥ <1 -]+ -+
ix o { + 7 - 50 (r T7—5Sa\r
15 (RY\? R\?
+ 7 5 (7) {‘7 - (7) }(Uu(o)"n": +0yOnn;) +
15 R\? R\?
+2(7—5a)(7> {_5+7<7) }"'”(0’"'""‘""-”
15 R\? R\?
— () {1-20-(2) Ysuc©@npn,..
+2(7—5c:)(r) { ’ (r) }""‘" i

In order to obtain the stress distribution for arbitrary 6,'” (not a pure shear), ,,*’ in this expression must be
replaced by 0,'” —45,0,'”, and the expression

R?
}a,,“”[&,-k + 73 (O — 3".‘"0]

corresponding to a deformation homogeneous at infinity (cf. Problem 2) must be added. We may give here the

general formula for the stresses at the surface of the cavity:
15 (©) (0) ©),
Oy = 7- 50 (I =06)(0u"® =0V, — 0" min) +

So—1

0 ({0), (4
+ 0, Omnnin, — 00,6, + 0y (8 — "i"t)} .

Near the cavity, the stresses considerably exceed the stiesses at infinity, but this extends over only a short
distance (the concentration of stresses). For example, if the medium is subjected to a homogeneous extension
(only ¢,/ different from zero), the greatest stress occurs on the equator of the cavity, where

_21-150

- (0)
7= 2050

§8. Equilibrium of an elastic medium bounded by a plane

Let us consider an elastic medium occupying a half-space, i.e. bounded on one side by an
infinite plane, and determine the deformation of the medium caused by forces applied to
its free surface.t The distribution of these forces need satisfy only one condition: they must
vanish at infinity in such a way that there is no deformation at infinity. In such a case the
equations of equilibrium can be integrated in a general form (J. Boussinesq 1885).

The equation of equilibrium (7.4) holds throughout the space occupied by the medium:

graddivu + (1 —20)Au = 0. 8.1)
We seek a solution of this equation in the form
u="f+grad¢, (8.2)
where ¢ is some scalar and the vector f satisfies Laplace’s equation:
Af=0. (83)

t The most direct and regular method of solving this problem is to use Fourier's method on equation (8.1). In
that case, however, some fairly complicated integrals have to be calculated. The method given below is based on a
number of artificial devices, but the calculations are simpler.
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Substituting (8.2) in (8.1), we then obtain the following equation for ¢:
2(1 —o)A¢p = —divf. (8.4)

We take the free surface of the elastic medium as the xy-plane; the medium is in z > 0.
We write the functions f, and f, as the z-derivatives of some functions g, and g,:

S, = 0g,/0z, f, = 0g,/0z. (8.5)

Since f, and f, are harmonic functions, we can always choose the functions g, and g, so as
to satisfy Laplace’s equation:

Ag, =0, Ng, = 0. (8.6)
Equation (8.4) then becomes

d (o
nuwm¢=—§(“ ; L)

Since g,, g, and j, are harmonic functions, we easily see that a function ¢ which satisfies
this equation can be written as

8
b=~ 3= (, %4 %>+w 8.7)

where ¢ is again a harmonic function:
AY =0. (8.8)

Thus the problem of determining the displacement u reduces to that of finding the
functions g,, g,, £, ¥, all of which satisfy Laplace’s equation.

We shall now write out the boundary conditions which must be satisfied at the free
surface of the medium (the plane z = 0). Since the unit outward normal vector n is in the
negative z-direction, it follows from the general formula (2.9) that ;,, = — P;. Using for g,
the general expression (5.11) and expressing the components of the vector uin terms of the
auxiliary quantities g,, g,, f; and ¥, we obtain after a simple calculation the boundary

conditions
0%g, [0 (1-20 1 dg. g, 6\1/
[‘a?lﬂ,ﬂa {2(1-a)f‘_2(1—a)(ax Yoy )T .

= —-2(1+0)P,/E,

d%g, [0 (1-20 1 dg, 0g, oy ]
— — = +2—
[azz i|z=o+_a"{2(1—¢7)fz 2(1—0)<5X +f7y 0z § Ji-o0

= —2(1+0)P,/E,

[ {f, (ag‘ ag,) paz}] = —2(1+0)P,/E. (8.10)

The components P, P,, P, of the external forces applied to the surface are given functions
of the coordinates x and y, and vanish at infinity.

The formulae by which the auxiliary quantities g,, g,, £ and ¥ were defined do not
determine them uniquely. We can therefore impose an arbitrary additional condition on

(8.9)
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these quantities, and it is convenient to make the quantity in the braces in equations (8.9)
vanish:t

0
(1-20)f, - ("‘ “”>+4(1— D% =0 ®.11)
dy
Then the conditions (8.9) become simply
o%g, 2(1+0) dg, 2(1+0)
=-="" = - P, :
[af Lo R E D (8.12)

Equations (8.10)-(8.12) suffice to determine completely the harmonic functions g,, g, f
and y.

For simplicity, we shall consider the case where the free surface of an elastic half-space is
subjected to a concentrated force F, i.e. one which is applied to an area so small that it can
be regarded as a point. The effect of this force is the same as that of surface forces given by
P = F4(x)d(y), the origin being at the point of application of the force. If we know the
solution for a concentrated force, we can immediately find the solution for any force
distribution P(x, y). For, if

u; = Gy(x, y, 2) Fy (8.13)

is the displacement due to the action of a concentrated force F applied at the origin, then
the displacement caused by forces P(x, y) is given by the integrali

u; = IJGik(x —x',y—y,2) P(x', y)dx'dy'. (8.14)

We know from potential theory that a harmonic function f which is zero at infinity and
has a given normal derivative df/dz on the plane z = 0 is given by the formula

Jeona) = -5 j j [i&y_)} dx dy’
7't 0z z=0 r

r={(x=x)2+(y—y)+2%}.
Since the quantities dg,/dz, dg,/0z and that in the braces in equation (8.10) satisfy Laplace’s

equation, while equations (8.10)and (8.12) determine the values of their normal derivatives
on the plane z = 0, we have

B a9, % _l+o P,(x', y)
% <6x+ > oz jj

_l+o'.F,
T mE r’

where

(8.15)

09, 140 F, dg, l+o F,
oz nE r’ 6z nmE r’ (8.16)

where now r = /(x? + y? + %),

t We shall not prove here that this condition can in fact be imposed; this follows from the absence of
contradiction in the result.
1 In mathematical terms, G, is the Green's tensor for the equations of equilibrium of a semi-infinite medium.



§8 Equilibrium of an elastic medium bounded by a plane 25

The expressions for the components of the required vector u involve the derivatives of
g g, With respect to x, y, z, but not g,, g, themselves. To calculate dg,/0x, dg,/0y, we
differentiate equations (8.16) with respect to x and y respectively:

d’g, 1+ Fxx o9, l1+ag Fy
oxéz  nE '’ dyoz  nE

Now, integrating over z from oo to z, we obtain

dg, l+o F,x
ox nE r(r+z)

(8.17)
6_g_, _1+0 Fy

dy nE r(r+z)

We shall not pause to complete the remaining calculations, which are elementary but
laborious. We determine f; and dy//0z from equations (8.11), (8.15) and (8.17). Knowing
0y /dz, it is easy to calculate dy//dx and dy/dy by integrating with respect to z and then
differentiating with respect to x and y. We thus obtain all the quantities needed to calculate
the displacement vector from (8.2), (8.5) and (8.7). The following are the final formulae:

[2'(35(“:?;;,22]" (XF, + yF,) }
[2'('?; 2 z';fz] Y (xF, + yF,) }

l+o0 ([2(1-0) 22 1-20 2
= —= | F —+ F F)) ».
“ = 2mE {[ et r(r+z)+r3 (xF+yF)) J
In particular, the displacement of points on the surface of the medium is given by putting
z=0:

1 1-2 2
_ +°.1{_( r”)" F,+201 —a)F,+g(xF,+yF,)}»

““=J8E r
140 1( (1-20)y 20y
Y= mE '7{_ — F.+2(1-0)F, +—~ (xF, +yF) . (8.19)
l1+o 1 1
3 * — — _2 _ F F .

PROBLEM

Determine the deformation of an infinite elastic medium when a force F is applied to a small region in it
(W. Thomson 1848).1

t The corresponding problem for an arbitrary infinite anisotropic medium has been solved by 1. M. Lifshitz
and L. N. Rozentsveig (Zhurnal eksperimental'nol i teoretichesko¥ fiziki 17, 783, 1947).

TOE-B
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SoLuTION. If we consider the deformation at distances r which are large compared with the dimension of the
region where the force is applied, we can suppose that the force is applied at a point. The equation of equilibrium
is (cf. (7.2)).

2(1+0)

Au+ graddiva = — Fo(r), (1

1-2a

where (r) = 6(x) d(y)4(z), the origin being at the point where the force is applied. We seek the solution in the
form u = uy + u,, where u, satisfies the Poisson-type equation

2(1+0)
Duy = — Fé(r). (2)
E
We then have for u, the equation
grad divu, + (1 —20) Au, = —graddivu,. 3)

The solution of equation (2) which vanishes at infinity is u, = (1 + 6)F/2nEr. Taking the curl of equation (3),
we have A curl u, = 0. At infinity we must have curl u; = 0. But a function harmonic in all space and zero at
infinity must be zero identically. Thus curl u; = 0, and we can therefore write u, = grad ¢. From (3) we obtain
grad {2(1 — o) A¢ +div u,} = 0. Hence it follows that the quantity in braces is a constant, and it must be zero at
infinity; we therefore have in all space

divu, l+o 1
Ad =~ = - F-grad| - ).
2(1 -o0) 4nE(1 — o) r
If ¢ is a solution of the equation Ay = 1/r, then
¢ l+o F av
= —-—————F-grady.
4nE(l - o) &

Taking the solution y = 4r, which has no singularities, we obtain
1+ (F-m)n—F
u, =grad¢ = s
8nE(1 —a) r
where n is a unit vector parallel to the position vector r. The final result is
1+o (3—40)F+n(n-F)
u= : .
8nE(l — o) r

On putting this formula into the form (8.13) we obtain the Green'’s tensor for the equations of equilibrium of
an infinite isotropic medium:t

1+a 1
Gy =—- [(3-40)0 +nn, ]~
r

1 [6,-. 1 o%r ]
_41:;1 r 4(1—0)6x,-6x,.

§9. Solid bodies in contact

Let two solid bodies be in contact at a point which is not a singular point on either
surface. Fig. 1a shows a cross-section of the two surfaces near the point of contact 0. The
surfaces have a common tangent plane at O, which we take as the xy-plane. We regard the
positive z-direction as being into either body (i.e. in opposite directions for the two bodies)
and denote the corresponding coordinates by z and z'.

t Thefact that the components of the tensor G, are first-order homogeneous functions of the coordinates x, y,
z is evident from arguments of homogeneity applied to the form of equation (1), where the left-hand side is a
linear combination of the second derivatives of the components of the vector u, and the right-hand side is a third-
order homogeneous function ((ar) = a~35(r)).

This property remains valid in the general case of an arbitrary anisotropic medium.
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Near a point of ordinary contact with the xy-plane, the equation of the surface can be
written
Z = KopXoXg, 9.1)

where summation is ":nderstood over the values 1, 2, of the repeated suffixes a, # (x, = x,
x, = y), and K, is a symmetrical tensor of rank two, which characterizes the curvature of
the surface: the principal values of the tensor k,z are 1/2R, and 1/2R,, where R, and R, are
the principal radii of curvature of the surface at the point of contact. A similar relation for
the surface of the other body near the point of contact can be written

Z' = K ypgXyXg. 9.2)

Let us now assume that the two bodies are pressed together by applied forces, and
approach a short distance h.t Then a deformation occurs near the original point of
contact, and the two bodies will be in contact over a small but finite portion of their
surfaces. Let u, and u’, be the components (along the z and z’ axes respectively) of the
corresponding displacement vectors for points on the surfaces of the two bodies. The
broken lines in Fig. 1b show the surfaces as they would be in the absence of any
deformation, while the continuous lines show the surfaces of the deformed bodies; the
letters z and z’ denote the distances given by equations (9.1)and (9.2). It is seen at once from
the figure that the equation

(z+u,)+(Z+v',)=h,
or
(Kop + K'gp) XoXg +u, +u', = h, 9.3)

holds everywhere in the region of contact. At points outside the region of contact, we have

z4+2 4+u,+u, <h

FiG. 1

t This contact problem in the theory of elasticity was first solved by H. Hertz (1882).
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We choose the x and y axes to be the principal axes of thetensor «,4 + k',5. Denoting the
principal values of this tensor by A and B, we can rewrite equation (9.3) as

Ax*+By*+u,+u', = h. (9.4)

The quantities A and B are related to the radii of curvature R,, R, and R',, R’; by
formulae which will be given without proof:
1 1 1 1

2A+B)= —+—+—+=-r,
(A + B) R,+R2 R’,+~R’z

SENES NESE SN ERAT RN
4(A-B)* = (R| R2> +(R,l R'z) +2cos2¢ R K J\R, R,/
where ¢ is the angle between the normal sections whose radii of curvature are R, and R’;.
The radii of curvature are regarded as positive if the centre of curvature lies within the
body concerned, and negative in the contrary case.

We denote by P,(x, y) the pressure between the two deformed bodies at points in the
region of contact; outside this region, of course, P, = 0. To determine the relation between
P, and the displacements u,, u’,, we can with sufficient accuracy regard the surfaces as plane

and use the formulae obtained in §8. According to the third of formulae (8.19) and (8.14),
the displacement u, under the action of normal forces P,(x, y) is given by

1_ 2 P I’ ’
uz = a J‘J‘ .l(x y)dx/ dyl,
nE r
1 — 2 P ’ ’
2 ([P gy
nE r

where g, ¢’ and E, E’ are the Poisson’s ratios and the Young’s moduli of the two bodies.
Since P, = 0 outside the region of contact, the integration extends only over this region. It
may be noted that, from these formulae, the ratio u,/u’, is constant:

u,/u, = (1-a%E'/(1 —0'?)E. 9.6)

The relations (9.4) and (9.6) together give the displacements u,, u’, at every point of the
region of contact (although (9.5) and (9.6), of course, relate to points outside that region
also).

Substituting the expressions (9.5) in (9.4), we obtain

1(1-0* 1-¢2\ [P,y
(S oY) 4t dy = h— Ax? — By?. 9.7)
n\ E E r

9.5

This integral equation determines the distribution of the pressure P, over the region of
contact. Its solution can be found by analogy with the following results of potential theory.
The idea of using this analogy arises as follows: firstly, the integral on the left-hand side of
equation (9.7) is of a type commonly found in potential theory, where such integrals give
the potential of a charge distribution; secondly, the potential inside a uniformly charged
ellipsoid is a quadratic function of the coordinates.

If the ellipsoid x2/a* + y?/b* + z*/c?> = 1 is uniformly charged (with volume charge
density p), the potential in the ellipsoid is given by
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¢(x’ y’ z)

= npabc

Ol—ss

{1_ x2 3 y2 B 22 } dc
a?+¢& bP+& A+ J{@+HB*+O (A +o)

In the limiting case of an ellipsoid which is very much flattened in the z-direction (c — 0),
we have

_ ( Xy de ;
M&”—nmwl{lauf bu{}JUf+®wﬂfMY

in passing to the limit ¢ — 0 we must, of course, put z = 0 for points inside the ellipsoid.
The potential ¢(x, y, z) can also be written as

. _ pdx'dy dz’
5 5,2) = ”J\/{(x—x')z+(y—y')2+(z—z')’}’

where the integration is over the volume of the ellipsoid. In passing to the limit ¢ —» 0, we
must put z = z’ = 0 in the radicand; integrating over z’ between the limits

+e /{1 = (x?/a®) - (y'?/b?)},

dx/dy/ xlz y/2
¢(x,y)=2pCH. . \/<l_a—2—b_2 L

r=J{x-x+(y-y7}
and the integration is over the area inside the ellipse

x'?/a* +y'?[b* = 1.

we obtain

where

Equating the two expressions for ¢(x, y), we obtain the identity

dx'dy’ l—ﬁ—ﬁ
r a? b?

~ " X2 y? de
'*’“"’j("a2+c'b2+c>J{(a2+c)(b2+¢)c}' G8)
0

Comparing this relation with equation (9.7), we see that the right-hand sides are
quadratic functions of x and y of the same form, and the left-hand sides are integrals of the
same form. We can therefore deduce immediately that the region of contact (i.e. the region
of integration in (9.7)) is bounded by an ellipse of the form

xZ yZ
S+ =1 (9.9)

and that the function P,(x, y) must be of the form

x2 y2
P,(x, y) = constant x \/(1 -5 —b_z)'
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Taking the constant such that the integral | [P, dx dy over the region of contact is equal to
the given total force F which moves the bodies together, we obtain

3F x2 y?
P,(x,y)=m\/<l—?—b—z>. 9.10)

This formula gives the distribution of pressure over the area of the region of contact. It
may be pointed out that the pressure at the centre of this region is 3 times the mean
pressure F/nab.

Substituting (9.10) in equation (9.7) and replacing the resulting integral in accordance
with (9.8), we obtain

FD [ x? y? 3 2
7“1_@—@)&/&@ + (b +£)¢)
0

= h— Ax* — By?,

3(1-¢* 1-0?
D=2 .
4( E | F )

This equation must hold identically for all values of x and y inside the ellipse (9.9); the
coefficients of x and y and the free terms must therefore be respectively equal on each side.
Hence we find

where

a

FD d¢
h=— , 9.11
n Jf{(a%c)(bwc)c} G110
0
A_Fl)jo d¢
= 2 2 b2 ’
m (@ +¢&)/{(@®+ &) (b* + &)} 012
B QJ d¢
n ) B+ J{(@+EBP+E)E}
0

Equations (9.12) determine the semi-axes a and b of the region of contact from the given
force F (4 and B being known for given bodies). The relation (9.11) then gives the distance
of approach h as a function of the force F. The right-hand sides of these equations involve
elliptic integrals.

Thus the problem of bodies in contact can be regarded as completely solved. The form
of the surfaces (i.e. the displacements u,, u',) outside the region of contact is determined by
the same formulae (9.5) and (9.10); the values of the integrals can be found immediately
from the analogy with the potential outside a charged ellipsoid. Finally, the formulae of §8
enable us to find also the deformation at various points in the bodies (but only, of course,
at distances small compared with the dimensions of the bodies).

Let us apply these formulae to the case of contact between two spheres with radii R and
R'. Here A = B=1/2R+1/2R’. It is clear from symmetry that a = b, i.e. the region of
contact is a circle. From (9.12) we find the radius a of this circle to be

a=F'"3{DRR'/(R+R)}' 9.13)
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his in this case the difference between the sum R + R’ and the distance between the centres
of the spheres. From (9.10) we obtain the following relation between F and h:

h=rF2|p2(ly L " 9.14
= Rt r : (5-14)

It should be noticed that h is proportional to F 2/*; conversely, the force F varies as h3/2.
We can write down also the potential energy U of the spheres in contact. Since — F =
—0U /oh, we have

2

RR’
=mr [ :
v 5D \/R +R ©.13)

Finally, it may be mentioned that a relation of the form h = constant x F2/3, or
F = constant x h*/2, holds not only for spheres but also for other finite bodies in contact.
This is easily seen from similarity arguments. If we make the substitution

a? - aa?, b? > ab?, F — a3/?F,

where a is an arbitrary constant, equations (9.12) remain unchanged. In equation (9.11),
the right-hand side is multiplied by a, and so h must be replaced by ah if this equation is to
remain unchanged. Hence it follows that F must be proportional to h3/2,

PROBLEMS
PROBLEM 1. Determine the time for which two colliding elastic spheres remain in contact.

SOLUTION. In a system of coordinates in which the centre of mass of the two spheres is at rest, the energy
before the collision is equal to the kinetic energy of the relative motion $uv?, where v is the relative velocity of the
colliding spheres and u = m,m,/(m, + m,) their reduced mass. During the collision, the total energy is the sum of
the kinetic energy, which may be written 4uA2, and the potential energy (9.15). By the law of conservation of

energy we have
dh\? s 2 4 RR’
ul— | +kh*? = po? k=— [——
dt SDN R+R

The maximum approach h, of the spheres corresponds to the time when their relative velocity h = 0, and is h
R
The time 1 during which the collision takes place (i.e. h varies from 0 to hy and back) is
ho 1

-2J‘ dh _2<#2)IISJ‘ dx
= 7(02 _khS/Z/“) - ;(—2_” (1 _XZIS)’
o

o

2\1/5 2\1/8
t=4~/_"r<2ﬂ(/‘_) =2.94<# )’_

5I(9/10) \k%v k%

By using the statical formulae cbtained in the text to solve this problem, we have neglected elastic oscillations
of the spheres resulting from the collision. If this is legitimate, the velocity v must be small compared with the
velocity of sound. In practice, however, the validity of the theory is limited by the still more stringent requirement
that the resulting deformations should not exceed the elastic limit of the substance.

or

PROBLEM 2. Determine the dimensions of the region of contact and the pressure distribution when two
cylinders are pressed together along a generator.

SoOLUTION. In this case the region of contact is a narrow strip along the length of the cylinders. Its width 2a and
the pressure distribution across it can be found from the formulae in the text by going to the limit b/a — . The
pressure distribution will be of the form P,(x) = constant x \/ (1 — x2/a?), where x is the coordinate across the
strip; normalizing the pressure to give a force F per unit length, we obtain

2F x?
P,(x)=—\/<l——3>.
na a
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Substituting this expression in (9.7) and effecting the integration by means of (9.8), we have

_4DF J‘ d¢ 8DF

T3 ) @497 3ndt
(]

One of the radii of curvature of a cylindrical surface is infinite, and the other is the radius of the cylinder; in this
case, therefore, A = 1/2R + 1/2R’, B = 0. We have finally for the width of the region of contact

_\/(wor. RR' )
a= 3n R+R/

§10. The elastic properties of crystals

The change in the free energy in isothermal compression of a crystal is, as with isotropic
bodies, a quadratic function of the strain tensor. Unlike what happens for isotropic bodies,
however, this function contains not just two coefficients, but a larger number of them. The
general form of the free energy of a deformed crystal is

F= %liklm UikUyms (10.1)

where 4,,,, is a tensor of rank four, called the elastic modulus tensor. Since the strain tensor
is symmetrical, the product u;u,,, is unchanged when the suffixes i, k, or I, m, or i, land k, m,
are interchanged. Hence we see that the tensor 4, can be defined so that it has the same
symmetry properties:

Aikim = Akitm = Aikmt = Aimix- (10.2)

A simple calculation shows that the number of different components of a tensor of rank
four having these symmetry properties is in general 21.}

In accordance with the expression (10.1) for the free energy, the stress tensor for a crystal
is given in terms of the strain tensor by

oy = OF [Ouy = Aiimlim; (10.3)

cf. also the last footnote to this section.

If the crystal possesses symmetry, relations exist between the various components of the
tensor A;., so that the number of independent components is less than 21.

We shall discuss these relations for each possible type of macroscopic symmetry of
crystals, i.e. for each of the crystal classes, dividing these into the corresponding crystal
systems (see SP 1, §§130, 131).

(1) Triclinic system. Triclinic symmetry (classes C, and C;) does not place any
restrictions on the components of the tensor 4, and the system of coordinates may be
chosen arbitrarily as regards the symmetry. All the 21 moduli of elasticity are non-zero and
independent. However, the arbitrariness of the choice of coordinate system enables us to
impose additional conditions on the components of the tensor 4;,,. Since the orientation
of the coordinate system relative to the body is defined by three quantities (angles of
rotation), there can be three such conditions; for example, three of the components may be
taken as zero. Then the independent quantities which describe the elastic properties of the

crystal will be 18 non-zero moduli and 3 angles defining the orientation of the axes in the
crystal.

t Another notation used for A, in the literature is 4., with « and g taking values from 1 to 6 in
correspondence with xx, yy, 2z, yz, zx, xy.
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(2) Monoclinic system. Let us consider the class C,; we take a coordinate system with the
xy-plane as the plane of symmetry. On reflection in this plane, the coordinates undergo the
transformation x — x, y — y, z = — z. The components of a tensor are transformed as the
products of the corresponding coordinates. It is therefore clear that, in the transformation
mentioned, all components 4,,,, whose suffixes include z an odd number of times (1 or 3)
will change sign, while the other components will remain unchanged. By the symmetry of
the crystal, however, all quantities characterizing its properties (including all components
Aixim) Must remain unchanged on reflection in the plane of symmetry. Hence it is evident
that all components with an odd number of suffixes z must be zero. Accordingly, the
general expression for the elastic free energy of a crystal belonging to the monoclinic
system is

F= %'lxxxx“x,vz2 + %}.””uyyz + %lzzuuuz + A’xxyy“xxuyy + }'xxuuxxuu +
+ Ayyzzuyyuzz + ZAxyxyuxyz + 2)':::““::2 + 2)‘ytyzuyzz + 2)'xxxyuxxuxy +
+ 24, Uy Uy + 24, 0 U U + B, U U (104)

This contains 13 independent coefficients. A similar expression is obtained for the class C,,
and also for the class C,,, which contains both symmetry elements (C, and g,). In the
argument given, however, the direction of only one coordinate axis (that of 2)is fixed; those
of x and y can have arbitrary directions in the perpendicular plane. This arbitrariness can
be used to make one coefficient, say 4,,,., vanish by a suitable choice of axes. Then the 13
quantities which describe the elastic properties of the crystal will be 12 non-zero moduli
and one angle defining the orientation of the axes in the xy-plane.

(3) Orthorhombic system. In all the classes of this system (C,,, D,, D,,) the choice of
coordinate axes is determined by the symmetry, and the expression obtained for the free
energy is the same for each class.

Let us consider, for example, the class D,,; we take the three planes of symmetry as the
coordinate planes. Reflections in each of these planes are transformations in which one
coordinate changes sign and the other two remain unchanged. It is evident therefore that
the only non-zero components 4;,,, are those whose suffixes contain each of x, y, z an even
number of times; the other components would have to change sign on reflection in some
plane of symmetry. Thus the general expression for the free energy in the orthorhombic
system is

F = %'lxxxxuxxz + %)‘yyyyuyyz + %}'uuuuz + j'xx)vyu::xuyy + }'xxnuxxuu +
+ 'lyyzz“yyuzz + 2}'xyxy“xy2 + 2}'xzxzux:2 + 21)’2]2“)‘22' (10'5)
It contains nine moduli of elasticity.
(4) Tetragonal system. Let us consider the class C,; we take the axis C, as the z-axis,and

the x and y axes perpendicular to two of the vertical planes of symmetry. Reflections in
these two planes signify tranformations

X—>-—Xx, y-=y z-z
and
X = X, y—--J z—-z

all components 4;,,, with an odd number of like suffixes therefore vanish. Furthermore, a
rotation through an angle n about the axis C, is the transformation

xX—Yy, y—= —x, z—2.

TOE-B*
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Hence we have
=

Axxxx = Ayyyyv Axxu yyzzs Ax:x: = }'yzyz'

The remaining transformations in the class C,, do not give any further conditions. Thus
the free energy of crystals in the tetragonal system is

F= é'lxxxx(uxxz + uyyz) + %Auuuzzz + 'lxxzz(“xxuzz + uyyuzz) +
+ 'lxxyyuxxuyy + zxxyx)'uxyz + 2}'xzxz(uxzz + uyzz)' (106)

It contains six moduli of elasticity.

A similar result is obtained for those other classes of the tetragonal system where the
natural choice of the coordinate axes is determined by symmetry. (D,,, D,, D,,). In the
classes C,, S,, C,,, on the other hand, only the choice of the z-axis is unique (along the axis
C, or S,). The requirements of symmetry then allow a further component 4, = —4,,,.
in addition to those which appear in (10.6). These components may be made to vanish by
suitably choosing the directions of the x and y axes, and F then reduces to the form (10.6).

(5) Rhombohedral system. Let us consider the class C,,; we take the third-order axis as
the z-axis, and the y-axis perpendicular to one of the vertical planes of symmetry. In order
to find the restrictions imposed on the components of the tensor 4,,,, by the presence of
the axis C,, it is convenient to make a formal transformation using the complex
coordinates & = x + iy, n = x — iy, the z coordinate remaining unchanged. We transform
the tensor 4,,,,, to the new coordinate system also, so that its suffixes take the values £, 7, z.
It is easy to see that, in a rotation through 2x/3 about the axis C,, the new coordinates
undergo the transformation & — £e2*/3, y —ne~2%/3 z - z. By symmetry only those
components A, Which are unchanged by this transformation can be different from zero.
These components are evidently the ones whose suffixes contain ¢ three times, or n three
times (since e2*'/3)® = 2™ = 1), or ¢ and n the same number of times (since e?*/3¢ ~2"i/3
= 1),1.€. 4,50 Agyen Azzwm Aenzer Agznzs Am,, Appnz- Furthermore, a reflection in the symmetry
plane perpendicular to the y-axis gives the transformationx - x,y - —y,z =+ 2,0r{ — 1,
n — . Since A, becomes 4,,,. in this transformation, these two components must be
equal. Thus crystals of the rhombohedral system have only six moduli of elasticity. In
order to obtain an expression for the free energy, we must form the sum 34,4l in
which the suffixes take the values &, n, z; since F is to be expressed in terms of the
components of the strain tensor in the coordinates x, y, z, we must express in terms of these
the components in the coordinates &, n, z. This is easily done by using the fact that the
components of the tensor u; transform as the products of the corresponding coordinates.
For example, since

£ = (x +iy)? = x? — y? + 2ixy,

it follows that
Uge = Uy, — Uy, + 2iu,,

Consequently, the expression for F is found to be
F = %}‘zu:uuz + 2).“‘,,(“,‘, + uyy)z + A’CC’M { (uxx - uyy)z + 4uxy2 } +

+ 2)'<nz:(uxx + uyy)uz: + 41{:»12 (“"2 + uyzz ) + 41{({2 { (uxx - uyy) Ugz — 2uxyuyz} .
(10.7)

This contains 6 independent coefficients. A similar result is obtained for the classes D; and
D,,4, but in the classes C; and S¢, where the choice of the x and y axes remains arbitrary,
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requirements of symmetry allow also a non-zero value of the difference 4., — Ay, This,
however, can be made to vanish by a suitable choice of the x and y axes.

(6) Hexagonal system. Let us consider the class C¢; we take the sixth-order axis as the z-
axis, and again use the coordinates { = x +iy, n = x —iy. In a rotation through an angle
$n about the z-axis, the coordinates ¢, n undergo the transformation & — Ee™/3,
n — ne”™/3. Hence we see that only those components A;,,, are non-zero which contain the
same number of suffixes £ and #. These are 4,,.,, Agnens Azgnn Agnzz> Agznz- Other symmetry
elements in the hexagonal system give no further restrictions. There are therefore only five
moduli of elasticity. The free energy is

F = Ji"'zzzz“zzz + 2}‘{n{q(uxx + uyy)z + )‘C:ﬂﬂ [(“xx - uyy)2 + 4uxy2] +
+ 2l{qzzuzz(uxx + uyy) + 41{17,:(“:::2 + uyzz)' (108)

It should be noticed that a deformation in the xy-plane (for which u,,, u,, and u,, are
non-zero) is determined by only two moduli of elasticity , as for an isotropic body; that is,
the elastic properties of a hexagonal crystal are isotropic in the plane perpendicular to the
sixth-order axis.

For this reason the choice of axis directions in this plane is unimportant and does not
affect the form of F. The expression (10.8) therefore applies to all classes of the hexagonal
system.

(7) Cubic system. We take the axes along the three fourth-order axes of the cubic system.
Since there is tetragonal symmetry (with the fourth-order axis in the z-direction), the
number of different components of the tensor A;,,, is limited to at most the following six:
Axxxxs Azzzzs Axxzzs Axxyys Axyxys Axzxz-T ROtations through $m about the x and y axes give
respectively the transformations x - x,y - —z,z—y,and x -z, y >y, z— —x. The
components listed are therefore equal in successive pairs. Thus there remain only three
different moduli of elasticity. The free energy of crystals of the cubic system is

F = %lxxxx (uxx2 + uyyz + uzzz) + lxxyy (uxxuyy + uxxuzz + uyyuzz) +
+ 2y (U ? + Uy, +uy,?). (10.9)

We may recapitulate the number of independent parameters (elastic moduli or angles
defining the orientation of axes in the crystal) for the classes of the various systems:

Triclinic 21 Rhombohedral (C;, S¢) 7
Monoclinic 13 Rhombohedral (Cs,, D3, D3,) 6
Orthorhombic 9 Hexagonal 5
Tetragonal (Cy, S4, Cap) 7 Cubic 3
Tetragonal (Csy, D24, Da, Dan) 6

The least number of non-zero moduli that is possible by suitable choice of the
coordinate axes is the same for all the classes in each system:

Triclinic 18 Rhombohedral 6
Monoclinic 12 Hexagonal S
Orthorhombic 9 Cubic 3
Tetragonal 6

t In the cubic classes T and T, there are no fourth-order axes. The same result is, however, obtained in these
cases by considering the third-order axes, rotations about which convert the x, y, z axes into one another.
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All the above discussion relates, of course, to single crystals. Polycrystalline bodies
whose component crystallites (grains) are sufficiently small may be regarded as isotropic
bodies (since we are concerned with deformations in regions large compared with the
dimensions of the crystallites). Like any isotropic body, a polycrystal has only two moduli
of elasticity. It might be thought at first sight that these moduli could be obtained from
those of the individual crystallites by simple averaging. This is not so, however. If we
regard the deformation of a polycrystal as the result of a deformation of its component
crystallites, it would in principle be necessary to solve the equations of equilibrium for
every crystallite, taking into account the appropriate boundary conditions at their surfaces
of separation. Hence we see that the relation between the elastic properties of the whole
crystal and those of its component crystallites depends on the actual form of the latter and
the amount of correlation of their mutual orientations. There is therefore no general
relation between the moduli of elasticity of a polycrystal and those of a single crystal of the
same substance.

The moduli of an isotropic polycrystal can be calculated with fair accuracy from those
of asingle crystal only when the elastic properties of the single crystal are nearly isotropic.}
In a first approximation, the moduli of elasticity of the polycrystal can then simply be put
equal to the “isotropic part” of the moduli of the single crystal. In the next approximation,
terms appear which are quadratic in the small “anisotropic part” of these moduli. It is
foundt that these correction terms are independent of the shape of the crystallites and of
the correlation of their orientations, and can be calculated in a general form.

Finally, let us consider the thermal expansion of crystals. In isotropic bodies, the
thermal expansion is the same in every direction, so that the strain tensor in free thermal
expansion is (see §6) u, = Ja(T — T,)d;,, where a is the thermal expansion coefficient. In
crystals, however, we must put

Uy = Yo (T — T5), (10.10)

where «;, is a tensor of rank two, symmetrical in the suffixes i and k. Let us calculate the
number of independent components of this tensor in crystals of the various systems. The
simplest way of doing this is to use the result of tensor algebra that to every symmetrical
tensor of rank two there corresponds a tensor ellipsoid§. It follows at once from
considerations of symmetry that, for triclinic, monoclinic and orthorhombic symmetry,
the tensor ellipsoid has three axes of different length. For tetragonal, rhombohedral and
hexagonal symmetry, on the other hand, we have an ellipsoid of revolution {with its axis of
symmetry along the axes C4, C; and C, respectively). Finally, for cubic symmetry the
ellipsoid becomes a sphere. An ellipsoid of three axes is determined by three quantities, an
ellipsoid of revolution by two, and a sphere by one (the radius). Thus the number of
independent components of the tensor a;, in crystals of the various systems is as follows:
triclinic, monoclinic and orthorhombic, 3; tetragonal, rhombohedral and hexagonal, 2;
cubic, 1.

Crystals of the first three systems are said o be biaxial, and those of the second three
systems uniaxial. It should be noticed that the thermal expansion of crystals of the cubic

system is determined by one quantity only, i.e. they behave in this respect as isotropic
bodies.

t For example, a measure of the anisotropy of the elastic properties of a cubic crystal is the difference 4,,,,
— Axxyy — 245yxy,: if this is zero, then (10.9) reduces to the expression (4.3) tor the elastic energy of an isotropic
body.

1 I M. Lifshitz and L. N. Rozentsveig, Zhurnal éksperimental'noi i teoreticheskoi fiziki 16, 967, 1946.

§ Determined by the equation a,x;x, = 1.
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PROBLEMS

ProBLEM 1. Express the elastic energy of a hexagonal crystal in terms of the elastic moduli A, in the
coordinates x, y, z (the x-axis being the sixth-order axis).

SoLuTION. For a general (not orthogonal) transformation of the coordinates, we have to distinguish the
contravariant and covariant components of vectors and tensors, which are respectively transformed as the
coordinates x’ themselves (and denoted by superscripts) and as the differentiation operators 3/0x’ (and denoted
by subscripts). The scalar (10.1) is then to be written as

F = $hmuui™.

In the expressions (10.8) and (10.9), the components u;, are transformed as contravariant ones. To establish the
relation between the components 4,,,, in the coordinates ¢, n, z and x, y, z, they are to be regarded as covariant; in
Cartesian coordinates the two sets are of course the same. For the transformation of (10.7),

g @ + 0 Ja ; (a a)
ox ot on dy \o& on/)
Transforming the A, as products of these operators gives
Axxxx = Ayyyy = Qhgary + Aeiqn,

Ayey = z'lu'w

Acxyy = Wentn — Lgenns

Axxzz = Ayyer = 2Agness

Agrxs = }'un = 21::.,:-
The free energy (10.8) in terms of these moduli is

F= &lxxxx (uxx + u”)z + i}‘nn“nz + Axxu (uxx + “yy)“u + 2;‘::" (unz + uyzz) + (;'xxxx - }'xxyy)(uxyz - uxxuyy)'

ProsLEM 2. Find the conditions for the elastic energy of a cubic crystal to be positive.

SoLuTION. The first two terms in.(10.9) constitute a quadratic form in the three independent variables u,,,
u,,, u,,. The conditions for this to be positive are that the determinant of its coefficients, one of the minors, and
Axxxx b€ positive. The third term in (10.9) must be positive also. These conditions give the inequalities

AA>0 A;>0, —3i, <1, <4,
where 4; = A5y, 42 = Axx,yy A= 'lxyxr

PROBLEM 3. Determine the dependence of the Young’s modulus of a cubic crystal on the direction in it.

SOLUTION. We take coordinate axes along the edges of the cube. Let the axis of a rod cut from the crystal be
along a unit vector n. The stress tensor in the stretched rod must satisfy the following conditions: (1) oun, = pn;,
where p is the tensile force on unit area of the ends of the rod (condition at the ends of the rod); (2) for direction.
perpendicular to n, g, 1, = 0 (condition on the sides of the rod). Such a tensor must have the form o, = pn;n, .
Calculating the components g;, by differentiating (10.9),t and comparing them with o, = pn;n,, we find the
components of the strain tensor to be

(Ay 4242 -4, nn,
U =P T 7 57 v YUy =P 7
(A4 — A2)(A4, +24;) 243
and similarly for the remaining components.

The relative elongation of the rod is u = (dI' —dl)/dl, where d!' is given by (1.2) and dx;/dl = n;. For small
deformations this gives u = u;, n;n,. The Young’s modulus is determined as the proportionality factor in p = Eu,
and is found to be given by

1 Av+4 1 2
= 1 ¥4 +(__ )(n,’n,1+n,1n,z+n,zn,’).

E (A +25)(—4) \Ay A —4,

E has extremum values in the directions of the edges (the x, y, z axes) and the body diagonals of the cube. Along
the edges,
E = (A4 +222) (4, — 42)/ (41 + 4)).

The transverse compression of the rod is u,, = u,, = —ou,, = —ou, where ¢ = 4,/(4, + 4;) acts as Poisson’s
ratio. According to the inequalities derived in Problem 2, —1 <o < 4.

t If o, is calculated not directly from gy, = Aimum but by differentiating a specific expression for F, the
derivatives with respect to u,, with i # k give doubled values for 5, . This is because the formula g, = 0F /duy is
meaningful only as an expression of the fact that dF = ¢;,du;, and in the sum g, du,, the terms in the differentials
du, of each component with i # k of the symmetrical tensor u, appear twice.



CHAPTER 11

THE EQUILIBRIUM OF RODS AND PLATES

§11. The energy of a bent plate

IN this chapter we shall study some particular cases of the equilibrium of deformed bodies,
and we begin with that of thin deformed plates. When we speak of a thin plate, we mean
that its thickness is small compared with its dimensions in the other two directions. The
deformations themselves are supposed small, as before. In the present case the
deformation is small if the displacements of points in the plate are small compared with its
thickness.

The general equations of equilibrium are considerably simplified when applied to thin
plates. It is more convenient, however, not to derive these simplified equations directly
from the general ones, but to calculate afresh the free energy of a bent plate and then vary
that energy.

When a plate is bent, it is stretched at some points and compressed at others: on the
convex side there is evidently an extension, which decreases as we penetrate into the plate,
finally becoming zero, after which a gradually increasing compression is found. The plate
therefore contains a neutral surface, on which there is no extension or compression, and on
opposite sides of which the deformation has oppoiste signs. The neutral surface clearly lies
midway through the plate.

L/

,
/
|
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|
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We take a coordinate system with the origin on the neutral surface and the z-axis normal
to the surface. The xy-plane is that of the undeformed plate. We denote by { the vertical
displacement of a point on the neutral surface, i.e. its z coordinate (Fig. 2). The components
of its displacement in the xy-plane are evidently of the second order of smallness relative to
{, and can therefore be put equal to zero. Thus the displacement vector for points on the
neutral surface is

u® = u® =0, u,® = {(x,y). (11.1)

For further calculations it is necessary to note the following property of the stresses in a
deformed plate. Since the plate is thin, comparatively small forces on its surface are needed

38
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to bend it. These forces are always considerably less than the internal stresses caused in the
deformed plate by the extension and compression of its parts. We can therefore neglect the
forces P; in the boundary condition (2.8), leaving o, n, = 0. Since the plate is only slightly
bent, we can suppose that the normal vector n is along the z-axis. Thus we must have on
both surfaces of the plate o,, = 0,, = 0,, = 0. Since the plate is thin, however, these
quantities must be small within the plate if they are zero on each surface. We therefore
conclude that the components o,,, g,,, 6., are small compared with the remaining
components of the stress tensor everywhere in the plate. We can therefore equate them to
zero and use this condition to determine the components of the strain tensor.
By the general formulae (5.13), we have

E E
O,x = 7T Uzy, O,y = _—uzy9
l+o l+o
(11.2)
azz_ (]+0_)(1_20_){( o)uzz+o(“1x+“yy)}'
Equating these expressions to zero, we obtain du,/dz = —0u,/0x, 0u,/0z = —du,/dy,
u,, = —a(u,,+u,)/(1—o0) In the first two of these equations u, can, with sufficient
accuracy, be replaced by ({(x, y): 0u,/0z = — d(/0x, du,/0z = — 8(/dy, whence
u, = —290(/0x, u,= —20{/dy. (11.3)

The constants of integration are put equal to zero in order to make
u,=u,=0 for z=0.
Knowing u, and u,, we can determine all the components of the strain tensor:

u,, = —z20%(/0x?, u,, = —z02(/dy?, u,, = —z0*(/dxdy,

g 9% 9%
Uy, = Uy, = 0’ Uu,, = o 2<5;7+a—y—2) (114)

We can now calculate the free energy F per unit volume of the plate, using the general
formula (5.10). A simple calculation gives the expression

_p B[ U (L N T\ 9t ot
F=z 1+a{2(1—a)(a)cz‘*'ay2 + oxdy ox2oy? ||’ (11.5)

The total free energy of the plate is obtained by integrating over the volume. The
integration over zis from —4hto +4h, where his the thickness of the plate, and that over
x, y is over the surface of the plate. The result is that the total free energy F, = [FdVofa
deformed plate is

EhJ a2c azc 2 azc 2 aZC aZC '
Fumgaiean | (o ta ) +20 (5eay) iyt |4xo
(11.6)

the element of area can with sufficient accuracy be written as dx dy simply, since the
deformation is small.

Having obtained the expression for the free energy, we can regard the plate as being of
infinitesimal thickness, i.e. as being a geometrical surface, since we are interested only in
the form which it takes under the action of the applied forces, and not in the distribution of
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deformations inside it. The quantity ( is then the displacement of points on the plate,
regarded as a surface, when it is bent.

§12. The equation of equilibrium for a plate

The equation of equilibrium for a plate can be derived from the condition that its free
energy be a minimum. To do so, we must calculate the variation of the expression (11.6).

We divide the integral in (11.6) into two, and vary the two parts separately. The first
integral can be written in the form [(A{)? d f, where d f = dx dyy is a surface element and
A = 0%/0x* + 0%/dy? is here (and in §§13, 14) the two-dimensional Laplacian. Varying
this integral, we have

5%J(AC)2df= ALASIdS

LY

r

= |A{div grad 6{d f

= (div(A{ grad 6{)d f— fgrad 6f-grad A{df.

o/

All the vector operators, of course, relate to the two-dimensional coordinate system (x, y).
The first integral on the right can be transformed into an integral along a closed contour
enclosing the plate: t

Jdiv(Acgrad 80 df= §A6(n-grad 80)dl

§A{@dl

where 0/0n denotes differentiation along the outward normal to the contour.
In the second integral we use the same transformation to obtain

jgrad&(-grad&{df= Jdiv(&{grad&()df—— J&CAZCdf

=§5C(n~gudAC)dl—J5§ A*df

0
§6cﬁgdl J&CAZCdf.
Substituting these results, we find that

&j(Ac)zdf LA df- §5c—dl+§gc@dl (12.1)

t The transformation formula for two-dimensional integrals is exactly analogous to the one for three
dimensions. The volume clement d ¥ is replaced by the surface element df (a scalar), and the surface element df is
replaced by a contour element d/ multiplied by the vector m along the outward normal to the contour. The
integral over d fis converted into one over d! by replacing d f3/0x; by n; d|. For instance, if ¢ is a scalar, we have

fgrad pdf=§ondl
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The transformation of the variation of the second integral in (11.6) is somewhat more
lengthy. This transformation is conveniently effected in components, and not in vector

form. We have
azc 2 azcazc
s [{(5ray) ~5aye 1ot

0% 9*6L 9*[d*8L 9%8L XL

2 —sG37 a2 g (4

0xdydxdy dx* dy ox* dy
The integrand can be written
2 (3L 2% 28T 0 (381 L 98LEH

dy 0xdy dx dy* ) ody\ dx dxdy dy ax*)

i.e. as the (two-dimensional) divergence of a certain vector. The variation can therefore be
written as a contour integral:

0*L \* 0*(d*¢ _ . a6 *C 96L 0%

8L 9*C 98 0%

where 0 is the angle between the x-axis and the normal to the contour (Fig. 3).
The derivatives of 5 with respect to x and y are expressed in terms of its derivatives
along the normal n and the tangent 1 to the contour:

0 -0 .

F = cos Ba—smﬂa,
0 . .0 0
5;: sm()a—n+cosoa.

Then formula (12.2) becomes

azc 2 aZCaZC
o[{(oes) -t fos

06¢ . %L ., 0L 2 %L
—§dl—a—n{2 smf)coseaxay—sm Oa—xi—cos Oa—y-z— +

a6l ( . 2L 0% 2 . 2 0%l
+§‘”W{ sm9cosB<W—W + (cos*0 —sin 0)6x6y .
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The second integral may be integrated by parts. Since it is taken along a closed contour, the
limits of integration are the same point, and we have simply

2 2 2
_§dlécaa{sm0cosﬂ<a§ ac)+(cos20 smzﬂ) c?cy}

Collecting all the above expressions and mulitiplying by the coefficients shown in
formula (11.6), we obtain the following final expression for the variation of the free energy:

§Fy = D([A’{&Cdf—

0A¢ ¢
§5Cdl[a—+(l—a)—{smf)cos@(a 77352 >+

0%
+ (cos?0 —sin? 0) } ] +

dxdy
06( . 0%
+§a—dl{AC+(l—a)(ZsmOcoseaxay—

0 0%

—sin20 2% 2995
sin 7x? —cos Gay >}>, (12.3)

with

D = Eh3/12(1 —a?). (12.4)

In order to derive from this the equation of equilibrium for the plate, we must equate to
zero the sum of the variation é F and the variation é U of the potential energy of the plate
due to the external forces acting on it. This latter variation is minus the work done by the
external forces in deforming the plate. Let P be the external force acting on the plate, per
unit areat and normal to the surface. Then the work done by the external forces when the
points on the plate are displaced a distance 8{ is | P8{ d f. Thus the condition for the total
free energy of the plate to be a minimum is

6FPI—JP6£df=0.

On the left-hand side of this equation we have both surface and contour integrals. The
surface integral is

J{DA’(—P}&Cdf.

The variation é{ in this integral is arbitrary. The integral can therefore vanish only if the
coefficient of 6{ is zero, i.e.
DAY -P=0. (12.5)

This is the equation of equilibrium for a plate bent by external forces acting on it. The
coefficient D is called the flexural rigidity or cylindrical rigidity of the plate.

t The force P may be the result of body forces (e.g. the force of gravity), and is then equal to the integral of the
body force over the thickness of the plate.
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The boundary conditions for this equation are obtained by equating to zero the contour
integrals in (12.3). Here various particular cases have to be considered. Let us suppose that
part of the edge of the plate is free, i.e. no external forces act on it. Then the variations 8
and 60{/dn on this part of the edge are arbitrary, and their coefficients in the contour
integrals must be zero. This gives the equations

JAY4 0 . 9’ 0%
~n +(1—a)a—l{cos03m8(ﬁ—a?)+
+ (sin260 — cos?8) ¢ =0 (12.6)
dxdy ’ '
. S L S
AC+(1—0){2sm0cos06xay—sm Bb—;—cos GW}—O’ (12.7)

which must hold at all free points on the edge of the plate.

The boundary conditions (12.6) and (12.7) are very complex. Considerable simplifi-
cations occur when the edge of the plate is clamped or supported. If it is clamped (Fig. 4a),
no vertical displacement is possible, and moreover no bending is possible at the edge. The
angle through which a given part of the edge turns from its initial position is (for small
displacements {) the derivative d{/on. Thus the variations 6 { and 63{/dn must be zero at
clamped edges, so that the contour integrals in (12.3) are zero identically. The boundary
conditions have in this case the simple form

(=0, df/on=0. (12.8)
T
(6) *
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The first of these expresses the fact that the edge of the plate undergoes no vertical
displacement in the deformation, and the second that it remains horizontal.

It is easy to determine the reaction forces on a plate at a point where it is clamped. These
are equal and opposite to the forces exerted by the plate on its support. As we know from
mechanics, the force in any direction is equal to the space derivative, in that direction, of
the energy. In particular, the force exerted by the plate on its support is given by minus the
derivative of the energy with respect to the displacement { of the edge of the plate, and the
reaction force by this derivative itself. The derivative in question, however, is just the
coefficient of 8{ in the second integral in (12.3). Thus the reaction force per unit length is
equal to the expression on the left of equation (12.6) (which of course, is not now zero),
multiplied by D.

Similarly, the moment of the reaction forces is given by the expression on the left of
equation (12.7), multiplied by the same factor. This follows at once from the result of
mechanics that the moment of the force is equal to the derivative of the energy with respect
to the angle through which the body turns. This angle is d{/dn, so that the corresponding
moment is given by the coefficient of 06{/dn in the third integral in (12.3). Both these
expressions (that for the force and that for the moment) can be very much simplified by
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virtue of the conditions (12.8). Since { and 0{/0n are zero everywhere on the edge of the
plate, their tangential derivatives of all orders are zero also. Using this and converting the
derivatives with respect to x and y in (12.6) and (12.7) into those in the directions of nand |,
we obtain the following simple expressions for the reaction force F and the reaction
moment M:

P do
F= 'D[anE MY anE ] (129)
62
M= Dgn—i. (12.10)

Another important case is that where the plate is supported (Fig. 4b), i.e. the edge rests
on a fixed support, but is not clamped to it. In this case there is again no vertical
displacement at the edge of the plate (i.c. on the line where it rests on the support), but its
direction can vary. Accordingly, we have in (12.3) 6 = 0 in the contour integral, but
98 /on # 0. Hence only the condition (12.7) remains valid, and not (12.6). The expression
on the left of (12.6) gives as before the reaction force at the points where the plate is
supported; the moment of this force is zero in equilibrium. The boundary condition (12.7)
can be simplified by converting to the derivatives in the direction of n and I and using the
fact that, since { = 0 everywhere on the edge, the derivatives 4, /dl and 2(/dI* are also
zero. We then have the boundary conditions in the form

2
., doar

=0 —_—— =
¢=0 Szt 94iam

(12.11)

PROBLEMS

PROBLEM 1. Determine the deflection of a circular plate (with radius R) with clamped edges, placed
horizontally in a gravitational field.

SoLuTION. We take polar coordinates, with the origin at the centre of the plate. The force on unit area of the
surface of the plate is P = phg. Equation (12.5) becomes A2{ = 648, where B = 3pg(1 — 0%)/16 hXE; positive
values of { correspond to displacements downward. Since { is a function of r only, we can put A =
r~'d(rd/dr)/dr. The general integral is { = fr* +ar? + b +cr? log(r/R)+dlog(r/R). In the case in question we
must put d = 0, since log(r/R) becomes infinite at r = 0, and ¢ = 0, since this term gives a singularity in Al atr
= 0 (corresponding to a force applied at the centre of the plate; see Problem 3). The constants a and b are
determined from the boundary conditions { = 0, d{/dr = 0 for r = R. The result is { = B(R? —r?)2.

PROBLEM 2. The same as Problem 1, but for a plate with supported edges.
SoLuTION. The boundary conditions (12.11) for a circular plate are

d?{ od¢

—_— =

dr2  rdr

The solution is similar to that of Problem 1, and the result is

{=0,

5
C=B(R’—r’)(—£R’—r2).
1+0

PROBLEM 3. Determine the deflection of a circular plate with clamped edges when a force fis applied to its
centre.

SOLUTION. We have A?{ = 0 everywhere except at the origin. Integration gives
{=ar*+b+crlog(r/R),
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the log r term again being omitted. The total force on the plate is equal to the force fat its centre. The integral of
NA*{ over the surface of the plate must therefore be

R
2n J. r A dr =f/D.
o
Hence ¢ = f/8nD. The constants a and b are determined from the boundary conditions. The result is

{ = (f/8rD) [4(R* ~r*)—r? log(R/r)].

PROBLEM 4. The same as Problem 3, but for a plate with supported edges.

SOLUTION.

3+0 R
= / [ (R*—r?)-2r* log—].
16nD L1 + 0 r

PrOBLEM 5. Determine the deflection of a circular plate suspended by its centre and in a gravitational field.

SoLuTION. The equation for { and its general solution are the same as in Problem 1. Since the displacement at
the centre is { = 0, we have ¢ = 0. The constants a and b are determined from the boundary conditions (12.6) and
(12.7), which are, for circular symmetry,

dag d(dzc 1d(>
= +-—

d¥ edl
dr dr\dr* rdr

- d—ri rdr

]

The result is

_ po2|,2 2 5 23+a
{=pr*}r*+8R*log—+2R .
r l+o

PROBLEM 6. A thin layer (of thickness h) is torn off a body by external forces acting against surface tension
forces at the surface of separation. With given external forces, equilibrium is established for a definite area of the
surface separated and a definite shape of the layer removed (Fig. 5). Derive a formula relating the surface tension
to the shape of the layer removed.t

FiG. §

SoLuTION. The layer removed can be regarded as a plate with one edge (the line of separation) clamped. The
bending moment on the layer is given by formula (12.10). The work done by this moment when the length of the
separated surface increases by dx is

Mad(/ox = Méxd*(/ox? = D(9*({/dx?)? 6x (1)

(the work of the bending force F itself is a second-order quantity). The equilibrium condition is that this work be
equal to the change in the energy of the system. The latter is made up of two parts: the change in the surface
energy, and the change in the elastic energy of the layer removed owing to the increase in length of its bent part.
The first part is 2ad x, where « is the surface-tension coefficient, the factor 2 allowing for the creation of two free
surfaces by the separation. The second part is D (9%{/dx?)? 8x, i.e. the energy (11.6) for a length dx of the layer,
which is half of the quantity (1). The resuit is. thus

a-=}D(8%(/dx?).

t This problem was discussed by I. V. Obreimov (1930) in connection with a method which he developed for
measuring the surface tension of mica. The measurements which he made by this method were the first direct
measurements of the surface tension of solids.
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§13. Longitudinal deformations of plates

Longitudinal deformations occurring in the plane of the plate, and not resulting in any
bending, form a special case of deformations of thin plates. Let us derive the equations of
equilibrium for such deformations.

If the plate is sufficiently thin, the deformation may be regarded as uniform over its
thickness. The strain tensor is then a function of x and y only (the xy-plane being that of
the plate) and is independent of z. Longitudinal deformations of a plate are usually caused
either by forces applied to its edges or by body forces in its plane. The boundary conditions
on both surfaces of the plate are then o;,n, = 0, or, since the normal vector is parallel to the
z-axis, 0;, =0, ie. o,, =0, =0, =0. It should be noticed, however, that in the
approximate theory given below these conditions continue to hold even when the external
tension forces are applied to the surfaces of the plate, since these forces are still small
compared with the resulting longitudinal internal stresses (o,,, 6,,, 0,,) in the plate. Since
they are zero at both surfaces, the quantities g,,, 7., ., must be small throughout the
thickness of the plate, and we can therefore take them as approximately zero everywhere in
the plate.

Equating to zero the expressions (11.2), we obtain the relations

U, = —a(uxx+ u.\')')/(l —0'), Uy, = Uy, = 0. (131)

Substituting in the general formulae (5.13), we obtain for the non-zero components of the
stress tensor

Oxx = mi (uxx + au”),
E

O'yy=l_—o_z(uyy+0'uxx), (132)
E

T Tag

It should be noticed that the formal transformation
E—-E/(1 —a?), c—a/(l —o0) (13.3)

converts these expressions into those which give the relation between the stresses a,,, o,,,
o,, and the strains u,,, u,, u,, for a plane deformation (formulae (5.13) with u,, = 0).

Having thus eliminated the displacement u,, we can regard the plate as a two-
dimensional medium (an “elastic plane”), of zero thickness, and take the displacement
vector u to be a two-dimensional vector with components u, and u,. If P, and P, are the
components of the external body force per unit area of the plate, the general equations of
equilibrium are

do do
h XX xy =
(h+w%aq
da,, 0o,
h(“—a;—-i-w)ﬁ-l’y =0.

Substituting the expressions (13.2), we obtain the equations of equilibrium in the form



§13 Longitudinal deformations of plates 47

Eh 1 62u,+ 1 6zux+ 1 0%, P =0
1—0%20x?  2(1+0)dy*  2(1 —a)dxdy +E=0,

(13.4)

1 aqu+ 1 0%y, 1 0%, 4P =0
1—0% dy* 2(1+0)dx?  2(1-—0)dxdy Yo

These equations can be written in the two-dimensional vector form
graddivu—4(1 —o)curl curlu = — (1 —6?)P/Eh, (13.5)

where all the vector operators are two-dimensional.
In particular, the equation of equilibrium in the absence of body forces is

graddivu—4(1 — o) curl curlu = 0. (13.6)

It differs from the equation of equilibrium for a plane deformation of a body infinite in the
z-direction (§7) only by the sign of the coefficient (in accordance with (13.3)).1 As for a
plane deformation, we can introduce the stress function defined by

g, = 0% x/0y?, o,, = —0%x/0xdy, o,, = 0%y/ox?, (13.7)
whereby we automatically satisfy the equations of equilibrium in the form

do,, Jdo Jdo do
+

Dy _ Dy Dy _ .

ox Oy ’ ox  dy

The stress function, as before, satisfies the biharmonic equation, since for Ay we have
Ax=0.,+0,,=E(u,+u,)/(1-0)={E/(1-0)}divu;

this differs only by a factor from the result for a plane deformation.

It may be pointed out that the stress distribution in a plate deformed by given forces
applied to its edges is independent of the elastic constants of the material. For these
constants appear neither in the biharmonic equation satisfied by the stress function, nor in
the formulae (13.7) which determine the components a;, from that function (nor,
therefore, in the boundary conditions at the edges of the plate).

PROBLEMS

PROBLEM 1. Determine the deformation of a plane disc rotating uniformly about an axis through its centre
perpendicular to its plane.

SoLuTION. The required solution differs only in the constant coefficients from the solution obtained in §7,
Problem 5, for the plane deformation of a rotating cylinder. The radia! displacement u, = u(r) is given by the
formula

u =p__-___ﬂz(l _az)r(3+aRz—r1).
8E 140

This is the expression which gives that of §7, Problem 5, if the substitution (13.3) is made.

PROBLEM 2. Determine the deformation of a semi-infinite plate (with a straight edge) under the action of a
concentrated force in its plane, applied to a point on the edge.

t A deformation homogeneous in the z-direction for which o,, = g,, = 0,, = 0 everywhere is sometimes
called a state of plane stress, as distinct from a plane deformation, for which u,, = u,, = u,, = 0 everywhere.
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SOLUTION. We take polar coordinates, with an angle ¢ measured from the direction of the applied force; it
takes values from — (4n + a) to 47 — a, where a is the angle between the direction of the force and the normal to
the edge of the plate (Fig. 6). At every point of the edge except that where the force is applied (the origin) we must
have a,, = 0,, = 0. Using the expressions for g, and g,, obtained in §7, Problem 11, we find that the stress
function must therefore satisfy the conditions

10
6_1 = constant, X constant, for ¢ = — (dn +a), n —a).
or rd¢

Both conditions are satisfied if y = rf(¢). With this substitution, the biharmonic equation

B2 oo
ror\ or) d¢?
gives solutions for f(¢) of the forms sin @, cos ¢, ¢sin @, pcose. The first two of these lead to stresses which are
zero identically. The solution which gives the correct value for the force applied at the origin is
x= —(F/n)r¢ sing, 0,, = —(2F/nr)cos ¢, 0,4 =049 =0, (1)

where F is the force per unit thickness of the plate. For, projecting the internal stresses on directions parallel and
perpendicular to the force F, and integrating over a small semicircle centred at the origin (whose radius then
tends to zero), we obtain

Ja,,rcos¢d¢ = —F,

J-a,,r singd¢ =0,

i.e. the values required to balance the external force applied at the origin.

Formulae (1) determine the required stress distribution. It is purely radial: only a radial compression force acts
on any area perpendicular to the radius. The lines of equal stress are the circles r = d cos ¢, which pass through
the origin and whose centres lic on the line of action of the force F (Fig. 6).

The components of the strain tensor are u,, = 0,,/E, u,y = —o00,,/E, u,, =0. From these we find by
integration (using the expressions (1.8) for the components u;, in polar coordinates) the displacement vector:
2F (1-0)F
u, = ——log(r/a)cos¢ — ¢sing,
nE nE

(1-0)F
nE

Here the constants of integration have been chosen so to give zero displacement (translation and rotation) of the
plate as a whole: an arbitrarily chosen point at a distance a from the origin on the line of action of the force is
assumed to remain fixed.

Using the solution obtained above, we can obtain the solution for any distribution of forces acting on the edge
of the plate (cf. §8). It is, of course, inapplicable in the immediate neighbourhood of the origin.

20F 2F R .
u, = ——sin¢ + —log(r/a)sin¢ + (sing — @ cosP).
nE nE

PROBLEM 3. Determine the deformation of an infinite wedge-shaped plate (with angle 2«) due to a force
applied at its apex.

‘SOLUTION. The stress distribution is given by formulae which differ from those of Problem 2 only in their
normalization. If the force acts along the mid-line of the wedge (F, in Fig. 7), we have o, =
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— (Fycos@)/r(a+14sin 2a), 6,4 = a4, = 0.If, on the other hand, the force acts perpendicular to this direction (F,
in Fig. 7), then
g,, = —(F,cos@)/r(a—14sin2a).

In each case the angle ¢ is measured from the direction of the force.

PROBLEM 4. Determine the deformation of a circular disc (with radius R) compressed by two equal and
opposite forces Fh applied at the ends of a diameter (Fig. 8).

SoLuTiON. The solution is obtained by superposing three internal stress distributions. Two of these are

o = —(2F/nr,)cosd,, a4, =04 =0

e,

oV, = —QF/nry)cosg,, o' 4 =04 =0,

where r,, ¢, and r,, ¢, are the polar coordinates of an arbitrary point P with origins at 4 and B respectively.
These are the stresses due to a normal force F applied to a point on the edge of a half-plane; see Problem 2. The
third distribution, ¢'®;, = (F/nR)d,,, is a uniform extension of definite intensity. For, if the point P is on the
edge of the disc, we have r, = 2R cos ¢,, r, = 2R cos ¢,, so that ¢'", , =a?,, = —F/nR. Since the
directions of r, and r, at this point are perpendicular, we see that the first two stress distributions give a uniform
compression on the edge of the disc. These forces can be just balanced by the uniform tension given by the third
system, so thz. the edge of the disc is free from stress, as it should be.

FiG. 8

PROBLEM 5. Determine the stress distribution in an infinite sheet with a circular aperture (radius R) under
uniform tension.

SOLUTION. The uniform tension of a continuous sheet corresponds to stresses '®,, = T, 6'%, = 0®,, =0,
where T is the tension force. These in turn correspond to the stress function 3@ = 4Ty? = §7r? sin‘¢ =
477 (1 — cos 2¢). When there is a circular aperture (with the centre as the origin of polar coordinates r, ¢), we
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seek the stiess function in the form y = '@+ x'*), #* = f(r) + F (r) cos 2¢. The integral of the biharmonic
equation which is independent of ¢ is of the form f (r) = ar? log r + br? + c log r, and in the integral proportional
to cos 2¢ we have F (r) = dr? + er* + g/r*. The constants are determined by the conditions ¢'*’;, = 0forr = o
and o,, = 0,4 = 0 for r = R. The result is

RZ
= {TR’{—logr+<l _-2-—)cos2¢}.

’.2

and the stress distribution is given by

R? 3R?
g, = iT(] ‘T){l +(1 ——2>cos2¢} ,
r r

R? 3R*
Oge = iT{l +r—2—(l +T>COSZ¢},

2R? 3R*
G, = —iT(l +—2‘—-—‘—>sm 2¢
r r

In particular, at the edge of the aperture we have 644 = T(1 —2 cos 2¢), and for ¢ = +4n, 64, = 3T, i.e. three
times the stress at infinity (cf. §7, Problem 12).

§14. Large deflections of plates

The theory of the bending of thin plates given in §§11-13 is applicable only to fairly
small deflections. Anticipating the result given below, it may be mentioned here that the
condition for that theory to be applicable is that the deflection { be small compared with
the thickness h of the plate. Let us now derive the equations of equilibrium for a plate
undergoing large deflections. The deflection { is not now supposed small compared with h.
It should be emphasized, however, that the deformation itself must still be small, in the
sense that the components of the strain tensor must be small. In practice, this usually
implies the condition { < I,i.e. the deflection must be small compared with the dimension !
of the plate.

The bending of a plate in general involves a stretching of it.+ For small deflections this
stretching can be neglected. For large deflections, however, this is not possible; there is
therefore no neutral surface in a plate undergoing large deflections. The existence of a
stretching which accompanies the bending is peculiar to plates, and distinguishes them
from thin rods, which can undergo large deflections without any general stretching. This
property of plates is a purely geometrical one. For example, let a flat circular plate be bent
into a segment of a spherical surface. If the bending is such that the circumference of the
plate remains constant, its diameter must increase. If the diameter is constant, on the other
hand, the circumference must be reduced.

The energy (11.6), which may be called the pure bending energy, is only the part of the
total energy which arises from the non-uniformity of the tension and compression
through the thickness of the plate, in the absence of any general stretching. The total
energy includes also a part due to this general stretching; this may be called the stretching
energy.

Deformations consisting of pure bending and pure stretching have been considered in
§§11-13. We can therefore use the results obtained in these sections. It is not necessary to
consider the structure of the plate across its thickness, and we can regard it as a two-
dimensional surface of negligible thickness.

We first derive an expression for the strain tensor pertaining to the stretching of a plate
(regarded as a surface) which is simultaneously bent and stretched in its plane. Let u be the

t An exception is, for instance, the bending of a flat plate into a cylindrical surface.
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two-dimensional displacement vector (with components u,, u,) for pure stretching; {, as
before, denotes the transverse displacement in bending. Then the element of length dl
= \/ (dx? +dy?) of the undeformed plate is transformed by the deformation into an
element d/', whose square is given by dI'? = (dx + du,)? + (dy + du,)? + d{2. Putting here
du, = (du,/dx)dx + (du,/dy) dy, and similarly for du,and d{, we obtain to within higher-
order terms dl'? = dI? + 2u,;dx,dx,, where the two-dimensional strain tensor is defined as

Uy = a“°‘+au” +1 o % 14.1
# 7 2\0x,  dx, ) 20x, Oxs (14.1)

(In this and the following sections, Greek suffixes take the two values x and y; as usual,
summation over repeated suffixes is understood). The terms quadratic in the derivatives of
u, are here omitted; the same cannot, of course, be done with the derivatives of {, since
there is no corresponding first-order terms.

The stress tensor g,4 due to the stretching of the plate is given by formula (13.2), in which
u,; must be replaced by the total strain tensor given by formula (14.1). The pure bending
energy is given by formula (11.6), and can be written “’1 ({)dx dy, where ¥, ({) denotes
the integrand in (11.6). The stretching energy per unit volume of the plate is, by the general
formulae, Ju,z0,,. The energy per unit surface area is obtained by multiplying by h, so that
the total stretching energy can be written |¥,(u,z) df, where

“Pz = %huaﬂa‘,,. (142)

Thus the total free energy of a plate undergoing large deflections is

F,= J{‘PI(C)H’Z(u.,)} df. (14.3)

Before deriving the equations of equilibrium, let us estimate the relative magnitude of
the two parts of the energy. The first derivatives of { are of the order of {/I, where l is the
dimension of the plate, and the second derivatives are of the order of {/I*. Hence we see
from (11.6) that ¥, ~ ER*(?/I*. The order of magnitude of the tensor components u,; is
{%/1?,and so ¥, ~ Eh{*/I*. A comparison shows that the neglect of ¥, in the approximate
theory of the bending of plates is valid only if {2 < k2.

The condition of minimum energy is  F + U = 0, where U is the potential energy in
the field of the external forces. We shall suppose that the external stretching forces, if any,
can be neglected in comparison with the bending forces. (This is always valid unless the
stretching forces are very large, since a thin plate is much more easily bent than stretched.)
Then we have for U the same expression as in §12: U = — [ PS{ df, where P is the
external force per unit area of the plate. The variation of the integral { ¥, df has already
been calculated in §12, and is

aﬁp, df =D jAIMCdf.

The contour integrals in (12.3) are omitted, since they give only the boundary conditions

on the equation of equilibrium, and not that equation itself, which is of interest here.
Finally, let us calculate the variation of the integral { ¥, df. The variation must be taken

both with respect to the components of the vector u and with respect to {. We have

oY
6JW2df=J5—36u,,dﬁ

u’p
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The derivatives of the free energy per unit volume with respect to u,, are g,5 hence
0¥, /0u,y = ho,g. Substituting also for u,, the expression (14.1), we obtain

6-[‘{’2 df=h ja,,éu,, df

0du, 0dus 0L 06 08¢ o
= Ia,,{ 0x, M 0x, M dx, 0x, * 0x, 0xg } df.

or, by the symmetry of o,

5Jw2 df =h Ja,, {66u, LIS }df.

ox, o, ox,

Integrating by parts, we obtain

_ 00,5 d a¢
6J~~‘P2 df— —h J‘{Ex—;éu,'*‘a(daﬂa)éC} df

The contour integrals along the circumference of the plate are again omitted.
Collecting the above results, we have

H i} al do l
+ = DAY —h— — |—-P —h=—2£ =0.
0F, +oU { il ha p(a,,,a ¢> }5{ ha \ ou, |df=0

In order that this relation should be satisfied identically, the coefficients of 6 and du, must
each be zero. Thus we obtain the equations

i Fl
2 -_-_n— —_— =
DA¥N—h o (a,, ax,> P, (14.4)
06,5/0x5 = 0. (14.5)

The unknown functions here are the two components u,, u, of the vector u and the
transverse displacement {. The solution of the equations gives both the form of the bent
plate (i.e. the function {(x, y)) and the extension resulting from the bending. Equations
(14.4)and (14.5) can be somewhat simplified by introducing the function x related to o4 by
(13.7). Equation (14.4) then becomes

(14.6)

DAZc_h<azx azc azx azc azx azc >=

dy? 0x2 " 0x2ay?  * 9xdy oxdy

Equations (14.5) are satisfied automatically by the expressions (13.7). Hence another
equation is needed; this can be obtained by eliminating u, from the relations (13.7) and
(13.2).

To do this, we proceed as follows. We express u,, in terms of g,,, obtaining from (13.2)

Uy = (axx_aayy)/Es uyy = (ayy— aaxx)/Ea uxy = (l +a)axy/E‘
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Substituting here the expression (14.1) for u,4, and (13.7) for 6,4,we find the equations

au".‘__l.ic_z-l iz_x_ ix_
ox "2\ax) " E\8y* %oxz )’

quy L(OCN' _ 1 (9% 0%y

dy 2\dy) E\ox* " ay* )’
ou, duy 300[__21+0) Oy
dy  ox oxdy E. 0xdy’

We take 62/dy? of the first, 92/dx? of the second, — 3%/dxdy of the third, and add. The
terms in u, and u, then cancel, and we have the equation

azcazc azc 2
2 _— =

Equations (14.6) and (14.7) form a complete system of equations for large deflections of
thin plates (A. Foppl 1907). These equations are very complicated, and cannot be solved
exactly, even in very simple cases. It should be noticed that they are non-linear.

We may mention briefly a particular case of deformations of thin plates, that of
membranes. A membrane is a thin plate subject to large external stretching forces applied at
its circumference. In this case we can neglect the additional longitudinal stresses caused by
bending of the plate, and therefore suppose that the components of the tensor a,, are
simply equal to the constant external stretching forces. In equation (14.4) we can then
neglect the first term in comparison with the second, and we obtain the equation of
equilibrium

0% +
g 0x,0x,

with the boundary condition that { = 0 at the edge of the membrane. This is a linear
equation. The case of isotropic stretching, when the extension of the membrane is the same
in all directions, is particularly simple. Let T be the absolute magnitude of the stretching
force per unit length of the edge of the membrane. Then ho,; = T4,4, and we obtain the
equation of equilibrium in the form

TA{+P=0. (14.9)

ha, P=0, (14.8)

PROBLEMS
PROBLEM 1. Determine the deflection of a plate as a function of the force on it when { > h.

SOLUTION. An estimate of the terms in equation (14.7) shows that y ~ E{2. For { » h, the first term in (14.6) is
small compared with the second, which is of the order of magnitude h{y/I* ~ Fh{ 3/14 (I being the dimension of
the plate). If this is comparable with the external force P, we have { ~ (I* P/Eh)’. Hence, in particular, we see that
{ is proportional to the cube root of the force.

PROBLEM 2. Determine the deformation of a circular membrane (with radius R) placed horizontally in
a gravitational field.

SOLUTION. We have P = pgh; in polar coordinates, (14.9) becomes

1d (rdC) pgh
rdr\ dr T

The solution finite for r = 0 and zero for r = R is { = pgh(R*—-r?)/4T.
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§15. Deformations of shells

In discussing hitherto the deformations of thin plates, we have always assumed that the
plate is flat in its undeformed state. However, deformations of plates which are curved in
the undeformed state (called shells) have properties which are fundamentally different
from those of the deformations of flat plates.

The stretching which accompanies the bending of a flat plate is a second-order effect in
comparison with the bending deflection itself. This is seen, for example, from the fact that
the strain tensor (14.1), which gives this stretching, is quadratic in {. The situation is
entirely different in the deformation of shells: here the stretching is a first-order effect, and
therefore is important even for small bending deflections. This property is most easily seen
from a simple example, that of the uniform stretching of a spherical shell. If every point
undergoes the same radial displacement {, the length of the equator increases by 2n{. The
relative extension is 2n{/2nR = {/R, and hence the strain tensor also is proportional to
the first power of {. This effect tends to zero as R — 0, i.e. as the curvature tends to zero,
and is therefore due to the curvature of the shell.

Let R be the order of magnitude of the radius of curvature of the shell, which is usually
of the same order as its dimension. Then the strain tensor for the stretching which
accompanies the bending is of the order of {/R, the corresponding stress tensor is ~ E{/R,
and the deformation energy per unit area is, by (14.2), of the order of Eh({/R)*. The pure
bending energy, on the other hand, is of the order of Eh®{2/R*, as before. We see that the
ratio of the two is of the order of (R/h)?, i.e. it is very large. It should be emphasized that
this is true whatever the ratio of the bending deflection { to the thickness h, whereas in the
bending of flat plates the stretching was important only for { 2 h.

In some cases there may be a special type of bending of the shell in which no stretching
occurs. For example, a cylindrical shell (open at both ends) can be deformed without
stretching if all the generators remain parallel (i.e. if the shell is, as it were, compressed
along some generator). Such deformations without stretching are geometrically possible if
the shell has free edges (i.e. is not closed) or if it is closed but its curvature has opposite
signs at different points. For example, a closed spherical shell cannot be bent without being
stretched, but if a hole is cut in it (the edge of the hole not being fixed), then such a
deformation becomes possible. Since the pure bending energy is small compared with the
stretching energy, it is clear that, if any given shell permits deformation without stretching,
then such deformations will, in general, actually occur when arbitrary external forces act
on the shell. The requirement that the bending be unaccompanied by stretching places
considerable restrictions on the possible displacements u,. These restrictions are purely
geometrical, and can be expressed as differential equations, which must be contained in the
complete system of equilibrium equations for such deformations. We shall not pause to
discuss this question further.

If, however, the deformation of the shell involves stretching, then the tensile stresses are
in general large compared with the bending stresses, which may be neglected. Shells for
which this is done are called membranes.

The stretching energy of a shéll can be calculated as the integral

Fp=14h ju.poza df, (15.1)

taken over the surface. Here u,; (¢, B = 1, 2) is the two-dimensional strain tensor in the
appropriate curvilinear coordinates, and the stress tensor o, is related to u,, by formulae
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(13.2), which can be written, in two-dimensional tensor notation, as
0.5 = E[(1 — 0)upp + 60,4u,,]/(1 — a?). (15.2)

A case requiring special consideration is that where the shell is subjected to the action of
forces applied to points or lines on the surface and directed through the shell. These may
be, in particular, the reaction forces on the shell at points (or lines) where it is fixed. The
concentrated forces result in a bending of the shell in small regions near the points where
they are applied; let d be the dimension of such a region for a force fapplied at a point (so
that its area is of the order of d?). Since the deflection { varies considerably over a distance
d, the bending energy per unit area is of the order of Eh*{?/d*, and the total bending
energy (over an area ~ d?)is of the order of Eh{?/d?. The strain tensor for the stretching
is again ~ {/R, and the total stretching energy due to the concentrated forces is
~ Eh{*d?/R?.Since the bending energy increases and the stretching energy decreases with
decreasing d, it is clear that both energies must be taken into account in determining the
deformation near the point of application of the forces. The size d of the region of bending
is given in order of magnitude by the condition that the sum of these energies be a
minimum, whence

d ~ /(hR). (15.3)

The energy ~ Eh?{?/R. Varying this with respect to { and equating the result to the work
done by the force f, we find the deflection { ~ fR/Eh?,

However, if the forces acting on the shell are sufficiently large, the shape of the shell may:
be considerably changed by bulges which form in it. The determination of the deformation
as a function of the applied loads requires special investigation in this unusual case.t

Let a convex shell (with edges fixed in such a way that it is geometrically rigid) be
subjected to the action of a large concentrated force f along the inward normal. For
simplicity we shall assume that the shell is part of a sphere with radius R. The region of the
bulge will be a spherical cap which is almost a mirror image of its original shape (Fig. 9

- ~~

FiG. 9

t The results given below are due to A. V. Pogorelov (1960). A more precise analysis of the problem together
with some similar ones is given in his book Teoriya obolochek pri zakriticheskikh deformatsiyakh ( Theory of Shells
at Supercritical Deformations), Moscow 1965.
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shows a meridional section of the shell). The problem is to determine the size of the bulge
as a function of the force.

The major part of the elastic energy is concentrated in a narrow strip near the edge of the
bulge, where the bending of the shell is relatively large; we shall call this the bending strip
and denote its width by d. This energy may be estimated, assuming that the radius r of the
bulge region is much less than R, so that the angle a <1 (Fig.9). Then r = Rsina ~ Ra,
and the depth of the bulge H = 2R(1 —cos a) ~ Ra?. Let { denote the displacement of
points on the shell in the bending strip. Just as previously, we find that the energies of
bending along the meridian and of stretching along the circle of latitude t per unit surface
area are respectively, in order of magnitude, Eh3{?/d* and Eh{?/R%. The order of
magnitude of the displacement { is in this case determined geometrically: the direction of
the meridian changes by an angle ~ a over the widthd,and so { ~ ad ~ rd/R. Multiplying
by the area of the bending strip (~ rd), we obtain the energies Eh*r3/R*d and Ehd*r®/R*.
The condition for their sum to be a minimum again gives d ~ \/ (hR), and the total elastic
energy is then ~ Er3(h/R)%'?, ort

constant x E h%'2, H*'?/R. (15.4)

In this derivation it has been assumed that d < r; formula (15.4) is therefore valid if the
condition
Rh/rt < 1 (15.5)

holds. When a bulge is formed, the outer layers of a spherical segment become the inner
ones and are therefore compressed, while the inner layers become the outer ones and are
stretched. The relative extension (or compression) ~ h/R, and so the corresponding total
energy in the region of the bulge ~ E(h/R)?hr?. With the condition (15.5) it is in fact small
in comparison with the energy (15.4) in the bending strip.

The required relation between the depth of the bulge H and the applied force f is
obtained by equating fto the derivative of the energy (15.4) with respect to H. Thus we find

H ~ f*R*/EhS. (15.6)

It should be noticed that this relation is non-linear.

Finally, let the deformation (bulge) of the shell occur under a uniform external pressure
p. In this case the work done is pA V, where AV ~ Hr? ~ H?R is the change in the volume
within the shell when the bulge occurs. Equating to zero the derivative with respect to H of
the total free energy (the difference between the elastic energy (15.4) and this work), we
obtain

H ~ h3E%/R*p>. (15.7)

The inverse variation (H increasing when p decreases) shows that in this case the bulge is
unstable. The value of H given by formula (15.7)corresponds to unstable equilibrium for a
given p: bulges with larger values of H grow of their own accord, while smaller ones shrink
(it is easy to verify that (15.7) corresponds to a maximum and not a minimum of the total
free energy). There is a critical value p_, of the external load beyond which even small

t The curvature of the shell does not affect the bending along the meridian in the first approximation, so that
this bending occurs without any general stretching along the meridian, as in the cylindrical bending of a flat plate.
! A more accurate calculation shows that the constant coefficient is 1.2(1 —g?)~ 34,
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changes in the shape of the shell increase in size spontaneously. This value may be defined
as that which gives H ~ h in (15.7).
P ~ ER?/R?, (15.8)

We shall add to the above brief account of shell theory only a few simple examples in the
following Problems.

PROBLEMS

PrOBLEM 1. Derive the equations of equilibrium for a spherical shell (with radius R) deformed symmetrically
about an axis through its centre.

SoLuTION. We take as two-dimensional coordinates on the surface of the shell the angles 6, ¢ in a system of
spherical polar coordinates, whose origin is at the centre of the sphere and polar axis along the axis of symmetry
of the deformed shell.

Let P, be the external radial force per unit surface area. This force must be balanced by a radial resultant of
internal stresses acting tangentially on an element of the shell. The condition is

h(Cye+ dee)/R = P,. (1)

This equation is exactly analogous to Laplace’s equation for the pressure difference between two media caused by
surface tension at the surface of separation.

Next, let Q. (6) be the resultant of all external forces on the part of the shell lying above the co-latitude 6; this
resultant is along the polar axis. The force Q,(6) must be balanced by the projection on the polar axis of the
stresses 2nRhag sinf acting on the cross-section 2nRh sinf of the shell at that latitude. Hence

2n Rhogy sin%8 = Q, (0). (2)
Equations (1) and (2) determine the stress distribution, and the strain tensor is then given by the formulae
Ugy = (g9 — 00 4,)/E, Uyy = (C4e —004)/E, Ugy = 0. 3)

Finally, the displacement vector is obtained from the equations

1 (du, 1
u,,=E Eb—'f’ll, , Ugy =E(“0c°t0+“r)’ (4)

PROBLEM 2. Determine the deformation under its own weight of a hemispherical shell convex upwards, the
edge of which moves freely on a horizontal support (Fig. 10).

FiG. 10

SOLUTION. Wehave P, = — pghcos8,Q, = —2nR? pgh(1 —cos#8); Q, is the total weight of the shell above the
circle of co-latitude 6. From (1) and (2) of Problem 1 we find

Rpg R ( 1 0)
=—-—) = ———— —cosf ).
Too 1 +cosé ’ i 1 +cosf

From (3) we calculate u,, and u,, and then obtain u, and u, from (4); the constant in the integration of the first
equation (4) is chosen so that for 8 = §n we have u, = 0. The result is

Rpg(1 + 0
p = pg’(:- o) {l :-ocsosl) +log(l +coso)} sin6,
R?pg(1 + 2+
u,=-—pu{l— 0cosB—cosBlog(l+cosO)}.
E 1+0

The value of u, for 6 = §n gives the horizontal displacement of the support.

TOE-C
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PROBLEM 3. Determine the deformation of a hemispherical shell with clamped edges, convex downwards and
filled with liquid (Fig. 11); the weight of the shell itself can be neglected in comparison with that of the liquid.

FiG. 11

SOLUTION. We have
P, = pogR cosb, Py =0,
[}
2
Q,=2nR? | P,cosOsinf do = SnR’pog(l —cos?9),
0

where p, is the density of the liquid. We find from (1) and (2) of Problem 1

R?pog 1 —cos30 R%pog —1+3cost —2cos®0

T el =
3h  sin®0 T sin2¢

Ogp =
The displacements are

Ug = — sin

R3poa(l +0) cosf
Po i +log(1 +cos¥) |,

3Eh 1 +cosb
R3poa(l +0) 3 cosf
u,=—?——— cosBlog(l +cosf) -1+ .
3Eh 1+0

For 0 = 4=, u, is not zero as it should be. This means that the shell is actually so severely bent near the clamped
edge that the above solution is invalid.

PROBLEM 4. A shell in the form of a spherical cap rests on a fixed support (Fig. 12). Determine the bending
resulting from the weight Q of the shell.

FiG. 12

SoLuTION. The main deformation occurs near the edge, which is bent as shown by the dashed line in Fig. 12.
The displacement u, is small compared with the radial displacement u, = {. Since { decreases rapidly as we move
away from the supported edge, the deformation can be regarded as that of a long flat plate (with length 2R sin a).
This deformation is composed of a bending and a stretching of the plate. The relative extension at each point is
{/R (R being the radius of the shell), and therefore the stretching energy is E{?/2R? per unit volume. Using as the
independent variable the distance x from the line of support, we have for the total stretching energy

. Eh [
F,.pl=2nRsmam (% dx.
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dlc 2
Fy p1 = 27Rsin a.in(d—) dx.

xl

The bending energy is

Varying the sum F, = F, , + F; , with respect to {, we obtain
d*C 12(1 -0
—— + e ———
dx* h?*R?

For x — oo, { must tend to zero, and for x = 0 we must have the boundary conditions of zero moment of the

forces ({” = 0) and equality of the normal force and the corresponding component of the force of gravity:

2aR sina.D{"" = Q cosa.
The solution which satisfies these conditions is { = Ae™ ** cos kx, where

[3(1—62)]“‘ P QcotaI:3R1(l—az)]"‘
K= —_— . = —_—
h?R? Eh 8nh?

The bending of the shell is

d = {(0) cosa = A cosa.

§16. Torsion of rods

Let us now consider the deformation of thin rods. This differs from all the cases hitherto
considered, in that the displacement vector u may be large even for small strains, i.e. when
the tensor yu;, is small.t For example, when a long thin rod is slightly bent, its ends may
move a considerable distance, even though the relative displacements of neighbouring
points in the rod are small.

There are two types of deformation of a rod which may be accompanied by a large
displacement of certain parts of it. One of these consists in bending the rod, and the other
in twisting it. We shall begin by considering the latter case.

A torsional deformation is one in which, although the rod remains straight, each
transverse section is rotated through some angle relative to those below it. If the rod is
long, even a slight torsion causes sufficiently distant cross-sections to turn through large
angles. The generators on the sides of the rod, which are parallel to its axis, become helical
in form under torsion.

Let us consider a thin straight rod with arbitrary cross-section. We take a coordinate
system with the z-axis along the axis of the rod and the origin somewhere inside the rod.
We use also the torsion angle 1, which is the angle of rotation per unit length of the rod.
This means that two neighbouring cross-sections at a distance dz will rotate through a
relative angle d¢ = t dz (so that t = d¢/dz). The torsional deformation itself, i.e. the
relative displacement of adjoining parts of the rod, is assumed small. The condition for this
to be so is that the relative angle turned through by cross-sections of the rod at a distance
apart of the order of its transverse dimension R be small, i.e.

TR< L (16.1)

Let us examine a small portion of the length of the rod near the origin, and determine
the displacements u of the points of the rod in that portion. As the undisplaced cross-

+ The only exception is a simple extension of a rod without change of shape, in which case the vector u is
always small if the tensor u;, is small, i.e. if the extension is small.
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section we take that given by the xy-plane. When a radius vector r turns through a small
angle é ¢, the displacement of its end is given by

or = d¢ xr, (16.2)

where d¢ is a vector whose magnitude is the angle of rotation and whose direction is that
of the axis of rotation. In the present case, the rotation is about the z-axis, and for points
with coordinate z the angle of rotation relative to the xy-plane is 1z (since 7 can be regarded
asa constant in some region near the origin). Then formula (16.2) gives for the components
u,, u, of the displacement vector

u, = —1zy, u, = 1zX. (16.3)

When the rod is twisted, the points in it in general undergo a displacement along the z-
axis also. Since for © = 0 this displacement is zero, it may be supposed proportional to t
when t is small. Thus

u, = w(x,y), (16.4)

where /(x, y) is some function of x and y, called the torsion function. As a result of the
deformation described by formulae (16.3) and (16.4), each cross-section of the rod rotates
about the z-axis, and also becomes curved instead of plane. It should be noted that, by
taking the origin at a particular point in the xy-plane, we “fix” a certain point in the cross-
section of the rod in such a way that it cannot move in that plane (but it can move in the z-
direction). A different choice of origin would not, of course, affect the torsional
deformation itself, but would give only an unimportant displacement of the rod as a
whole.

Knowing u, we can find the components of the strain tensor. Since u is small in the
region under consideration, we can use the formula

Uiy = %(0u,—/6xk +0uh/axi).
The result is
uxx = u

yy=“xy= uzz=0a

Uy, = %r(‘;—i’ —y>, u,, =4t (g—lﬁ+X>. (16.5)

It should be noticed that u, = 0; in other words, torsion does not result in a change in
volume, i.e. it is a pure shear deformation.
For the components of the stress tensor we find

Oxx = Uyy =0, = o'xy = Oa
0 ¢
o, =2uu, = ut (%—y), 0,, = 2uu, = yt<%+x). (16.6)
Here it is more convenient to use the modulus of rigidity u in place of E and g. Since only

o,. and g, are different from zero, the general equations of equilibrium da;,/dx, = 0
reduce to

do,, 0o,
Em + 3y - 0. (16.7)
Substituting (16.6), we find that the torsion function must satisfy the equation
Ay =0, (16.8)

where A is the two-dimensional Laplacian.
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It is rather more convenient, however, to use a different auxiliary function x(x, y),
defined by

o,, = 2utdy/dy, 0,, = —2utdy/0x; (16.9)

this function satisfies more convenient boundary conditions on the circumference of the
rod (see below). Comparing (16.9) and (16.6), we obtain

oy ox oy ox

—=y+2=, ——=—-x-2=. .

ax 7 dy dy * T ox (16.10)
Differentiating the first of these with respect to y, the second with respect to x, and
subtracting, we obtain for the function y the equation

Ax=—1. (16.11)

To determine the boundary conditions on the surface of the rod, we note that, since the
rod is thin, the external forces on its sides must be small compared with the internal
stresses in the rod, and can therefore be put equal to zero in seeking the boundary
conditions. This fact is exactly analogous to what we found in discussing the bending of
thin plates. Thus we must have g;,n, = 0 on the sides of the rod; since the z-direction is
along the axis, n, = 0, and this equation becomes

g, n.+0o,,n,=0.
Substituting (16.9), we obtain

ox  Ox
Xp, % —0.
oy ox ™

The components of the vector normal to a plane contour (the circumference of the rod) are
n, = —dy/dl,n, = dx/dl, where x and y are coordinates of points on the contour and d/is
an element of arc. Thus we have

0x Ox

—dx+-=dy=dx =0,

Ox dy y X
whence y = constant, i.e. x is constant on the circumference. Since only the derivatives of
the function y appear in the definitions (16.9), it is clear that any constant may be added to
x. If the cross-section is singly connected, we can therefore use, without loss of generality,
the boundary condition

x=0 (16.12)

on equation (16.11).1

For a multiply connected cross-section, however, y will have different constant values
on each of the closed curves bounding in the cross-section. Hence we can put y = 0 on only
one of these curves, for instance the outermost (Co in Fig. 13). The values of y on the
remaining bounding curves are found from conditions which are a consequence of the

t The problem of determining the torsion deformation from equation (16.11) with the boundary condition
(16.12) is formally identical with that of determining the bending of a uniformly loaded plane membrane from
equation (14.9).

Itis useful to note also an analogy with fluid mechanics: an equation of the form (16.11) determines the velocity
distribution v(x, y) for a viscous fluid in a pipe, and the boundary condition (16.12) corresponds to the condition
v = 0 at the fixed walls of the pipe (see FM, §17).
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one-valuedness of the displacement u, = 1/ (x, y) as a function of the coordinates. For,
since the torsion function ¥ (x, y) is one-valued, the integral of its differential dyy round a
closed contour must be zero. Using the relations (16.10), we therefore have

for-fze- o)
i) frare

=0,
or a
Xl = (16.13)
on

where 0y /dn is the derivative of the function x along the outward normal to the curve, and
S the area enclosed by the curve. Applying (16.13) to each of the closed curves C,,C,, . . .,
we obtain the required conditions.
Let us determine the free energy of a rod under torsion. The energy per unit volume is
F = %aikuik = O, U, + ayzuyz = (O‘xz2 + 0'),22)/2[1
or, substituting (16.9),

ox \*> [ox\?
F = 2ut? [(%) +(5_f’> :|E 2ut?(grad x)?,

where grad denotes the two-dimensional gradient. The torsional energy per unit length of
the rod is obtained by integrating over the cross-section of the rod, i.e. it is $Ct2, where the
constant C = 4u j (grad x)? df; and is called the torsional rigidity of the rod. The total
elastic energy of the rod is equal to the integral

Fog=1% thz dz, (16.14)

taken along its length.
Putting

(grad x)* = div(ygrad ) — x & x = div(x grad x) + x

and transforming the integral of the first term into one along the circumference of the rod,
we obtain

5
C=4y§xﬁdl+4y'{x‘dﬁ (16.15)
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If the cross-section is singly connected, the first term vanishes by the boundary condition
x =0, leaving

C=4u Jx dx dy. (16.16)

For a multiply connected cross-section (Fig. 13), we put x = 0 on the outer boundary C,
and denote by y, the constant values of x on the inner boundaries C,, obtaining by (16.13)

C=4u) uSi+4u fx dx dy; (16.17)
k

it should be remembered that, in integrating in the first term in (16.15), we go anti-
clockwise round the contour C, and clockwise round all the others.

Let us consider now a more usual case of torsion, where one of the ends of the rod is held
fixed and the external forces are applied only to the other end. These forces are such that
they cause only a twisting of the rod, and no other deformation such as bending. In other
words, they form a couple which twists the rod about its axis. The moment of this couple
will be denoted by M.

We should expect that, in such a case, the torsion angle 7 is constant along the rod. This
can be seen, for example, from the condition that the free energy of the rod be a minimum
in equilibrium. The total energy of a deformed rod is equal to the sum F, 4 + U, where U is
the potential energy due to the action of the external forces. Substituting in (16.14)
7 = d¢/dz and varying with respect to the angle ¢, we find

do\? d¢ do¢ ~

or, integrating by parts,

- JC%&# dz+6U +[Cté¢] = 0.

The last term on the left is the difference of the values at the limits of integration, i.e. at the
ends of the rod. One of these ends, say the lower one, is fixed, so that ¢ = O there. The
variation 6U of the potential energy is minus the work done by the external forces in
rotation through an angle ¢. As we know from mechanics, the work done by a couple in
such a rotation is equal to the product Md¢ of the angle of rotation and the moment of the
couple. Since there are no other external forces, U = — Md¢, and we have

jcg—:é(b dz+[dd(—M+Cr)] =0. (16.18)

The second term on the left has its value at the upper end of the rod. In the integral over z,
the variation d¢ is arbitrary, and so we must have
Cdt/dz =0,

ie.
= constant. (16.19)

Thus the torsion angle is constant along the rod. The total angle of rotation of the upper
end of the rod relative to the lower end is tl, where [ is the length of the rod.
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In equation (16.18), the second term also must be zero, and we obtain the following
expression for the constant torsion angle:

t = M/C. (16.20)

PROBLEMS
PROBLEM 1. Determine the torsional rigidity of a rod whose cross-section is a circle with radius R.

SoLuTION. The solutions of Problems 1-4 are formally identical with those of problems of the motion of a
viscous fluid in a pipe of corresponding cross-section (see the last footnote to this section). The discharge Q is here
represented by C.

For a rod of circular cross-section we have, taking the origin at the centre of the circle, y = $ (R? — x? — y?),
and the torsional rigidity is C = 4 un R*. For the function y we have, from (16.10), y = constant. A constant ¢,
however, corresponds by (16.4) to a simple displacement of the whole rod along the z-axis, and so we can suppose
that ¢ = 0. Thus the transverse sections of a circular rod undergoing torsion remain plane.

PROBLEM 2. The same as Problem 1, but for an elliptical cross-section with semi-axes a and b.

SoLuTION. The torsional rigidity is C = nua®b®/(a’ + b?). The distribution of longitudinal displacements is
given by the torsion function ¢ = (b? — a?)xy/(b? + a?), where the coordinate axes coincide with those of the
ellipse.

PrROBLEM 3. The same as Problem 1, but for an equilateral triangular cross-section with side a.
SoLuTiON. The torsional rigidity is C = \/Sua‘/SO. The torsion function is
¥ =y(x/3+y) (x/3-y)/6a

the origin being at the centre of the triangle and the x-axis along an aititude.

PROBLEM 4. The same as Problem 1, but for a rod in the form of a long thin plate (with width d and thickness
h < d).

SoLUTION. The problem is equivalent to that of viscous fluid flow between plane parallel walls. The result is
that C = { udh®.

PROBLEM 5. The same as Problem 1, but for a cylindrical pipe with internal and external radii R, and R,
respectively.

SoLuTiON. The function x = }(R;2 —r?) (in polar coordinates) satisfies the condition (16.13) at both
boundaries of the annular cross-section of the pipe. From formula (16.17) we then find C = $ un (R,* — R ,*).

PROBLEM 6. The same as Problem 1, but for a thin-walled pipe with arbitrary cross-section.

SOLUTION. Since the walls are thin, we can assume that y varies through the wall thickness h, from zero on one
side to x, on the other, according to the linear law y = x, y/h (y being a coordinate measured through the wall).
Then the condition (16.13) gives x, L/h = S, where L is the perimeter of the pipe cross-section and S the area
which it encloses. The second term in the expression (16.17) is small compared with the first, and we obtain
C = 4hS*u/ L. If the pipe is cut longitudinally along a generator, the torsional rigidity falls sharply, becoming (by
the result of Problem 4) C = {uLh’.

§17. Bending of rods

A bent rod is stretched at some points and compressed at others. Lines on the convex
side of the bent rod are extended, and those on the concave side are compressed. As with
plates, there is a neutral surface in the rod, which undergoes neither extension nor
compression. It separates the region of compression from the region of extension.

Let us begin by investigating a bending deformation in a small portion of the length of
the rod, where the bending may be supposed slight; by this we here mean that not only the
strain tensor but also the magnitudes of the displacements of points in the rod are small.
We take a coordinate system with the origin on the neutral surface in the portion
considered, and the z-axis parallel to the axis of the undeformed rod. Let the bending occur
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in the zx-plane. In a rod undergoing only small deflections we can suppose that the
bending occurs in a single plane. This follows from the result of differential geometry that
the deviation of a slightly bent curve from a plane (its torsion) is of a higher order of
smallness than its curvature.

As in the bending of plates and the twisting of rods, the external forces on the sides of a
thin bent rod are small compared with the internal stresses, and can be taken as zero in
determining the boundary conditions at the sides of the rod. Thus we have everywhere on
the sides of the rod a;,n, = 0, or, since n, = 0,0,,n, + o,,n, = 0,and similarly fori = y, z.
We take a point on the circumference of a cross-section for which the normal n is parallel
to the x-axis. There will be another such point somewhere on the opposite side of the rod.
At both these points n, = 0, and the above equation gives g,, = 0. Since the rod is thin,
however, a,, must be small everywhere in the cross-section if it vanishes on either side. We
can therefore put o, = O everywhere in the rod. In a similar manner, it can be seen that all
the components of the stress tensor except g,, must be zero. That is, in the bending of a
thin rod only the extension (or compression) component of the internal stress tensor is
large. A deformation in which only the component o, of the stress tensor is non-zero is
just a simple extension or compression (§5). Thus there is a simple extension or
compression in every volume element of a bent rod. The amount of this varies, of course,
from point to point in every cross-section, and so the whole rod is bent. ‘

It is easy to determine the relative extension at any point in the rod. Let us consider an
element of length dz parallel to the axis of the rod and near the origin. On bending, the
length of this element becomes dz’. The only elements which remain unchanged are those
which lie in the neutral surface. Let R be the radius of curvature of the neutral surface near
the origin. The lengths dz and dz’' can be regarded as elements of arcs of circles whose radii
are respectively R and R + x, x being the coordinate of the point where dz’ lies. Hence

R
dz' = ;xdz=<l+%>dz.

The relative extension is therefore (dz' —dz)/dz = x/R.
The relative extension of the element dz, however, is equal to the component u,, of the
strain tensor. Thus

u,, = x/R. (17.1)

We can now find o,, by using the relation ¢,, = Eu,, which holds for a simple extension.
This gives '
o., = Ex/R. (17.2)

The position of the neutral surface in a bent rod has now to be determined. This can be
done from the condition that the deformation considered must be pure bending, with no
general extension or compression of the rod. The total internal stress force on a cross-
section of the rod must therefore be zero, i.e. the integral |o,,df, taken over a cross-
section, must vanish. Using the expression (17.2) for a,,, we obtain the condition

Jx df = 0. (17.3)

We can now bring in the centre of mass of the cross-section, which is that of a uniform
flat disc of the same shape. The coordinates of the centre of mass are, as we know, given by
the integrals | x df/{ df. {y df/{ df. Thus the condition (17.3) signifies that, in a coordinate
system with the origin in the neutral surface. the x coordinate of the centre of mass of any

TOE-C*
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cross-section is zero. The neutral surface therefore passes through the centres of mass of
the cross-sections of the rod.

Two components of the strain tensor besides u,, are non-zero, since for a simple
extension we have u,, = u,, —ou,,. Knowing the strain tensor, we can easily find the
displacement also:

u,, = 0u,/0z = x/R, Ou,/0x = du,/0y = —ox/R,

ou, Ou, Ou, Ou, ou, Ou,

6x+6z_’ dy  ox gz dy

0.

Integration of these equations gives the following expressions for the components of the
displacement:
1 2 2 2
u‘_—ﬁ{z +0(x?—y?)}, (17.4)
u, = —oxy/R, u,=xz/R.

The constants of integration have been put equal to zero; this means that we “fix” the
origin.

It is seen from formulae (17.4) that the points initially on a cross-section z = constant
= z, will be found, after the deformation, on the surface z = z5 + u, = z, (1 + x/R). We
see that, in the approximation used, the cross-sections remain plane but are turned
through an angle relative to their initial positions. The shape of the cross-section changes,
however; for example, when a rod of rectangular cross-section (sides a, b) is bent, the sides
y = +1b of the cross-section become y = +4b+u, = +4b(1 —ox/R), ie. no longer
parallel but still straight. The sides x = + 1 a, however, are bent into the parabolic curves

1
x=tda+u = i%a—ﬁ[202+6(i02—)’2)]

(Fig. 14).
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The free energy per unit volume of the rod is
%aik Uy = %azz Uz = %EXZ/RZ-
Integrating over the cross-section of the rod, we have

%(E/Rz)j)c2 df. (17.5)

This is the free energy per unit length of a bent rod. The radius of curvature R is that of the
neutral surface. However, since the rod is thin, R can here be regarded, to the same
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approximation, as the radius of curvature of the bent rod itself, regarded as a line (often
called an “elastic line™).

In the expression (17.5) it is convenient to introduce the moment of inertia of the cross-
section. The moment of inertia about the y-axis in its plane is defined as

I,= sz df, (17.6)

analogously to the ordinary moment of inertia, but with the surface element df instead of
the mass element. Then the free energy per unit length of the rod can be written

{EI/R?. (17.7)

We'can also determine the moment of the internal stress forces on a given cross-section
of the rod (the bending moment). A force o,, df = (xE/R) df acts in the z-direction on the
surface element df of the cross-section. Its moment about the y-axis is xa,, df. Hence the
total moment of the forces about this axis is

M, = (E/R) sz df = EI/R. (17.8)

Thus the curvature 1/R of the elastic line is proportional to the bending moment on the
cross-section concerned.
The magnitude of I, depends on the direction of the y-axis in the cross-sectional plane.
It is convenient to express I, in terms of the principal moments of inertia. If 6 is the angle
between the y-axis and one of the principal axes of inertia in the cross-section, we know
from mechanics that
I, =1, cos*0 +1, sin?6, (179)

where I, and I, are the principal moments of inertia. The planes through the z-axis and the
principal axes of inertia.are called the principal planes of bending.

If, for example, the cross-section is rectangular (with sides a, b), its centre of mass is at
the centre of the rectangle, and the principal axes of inertia are parallel to the sides. The
principal moments of inertia are

I, =a®/12, I, =ab3/12. (17.10)

For a circular cross-section with radius R, the centre of mass is at the centre of the circle,
and the principal axes are arbitrary. The moment of inertia about any axis lying in the
cross-section and passing through the centre is

I1=%nR* (17.11)

§18. The energy of a deformed rod

In §17 we have discussed only a small portion of the length of a bent rod. In going on to
investigate the deformation throughout the rod, we must begin by finding a suitable
method of describing this deformation. It is important to note that, when a rod undergoes
large bending deflections,} there is in general a twisting of it as well, so that the resulting
deformation is a combination of pure bending and torsion.

t By this, it should be remembered, we mean that the vector u is not small, but the strain tensor is still small.
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To describe the deformation, it is convenient to proceed as follows. We divide the rod
into infinitesimal elements, each of which is bounded by two adjacent cross-sections. For
each such element we use a coordinace system ¢, 7, {, so chosen that all the systems are
parallel in the undeformed state, and their {-axes are parallel to the axis of the rod. When
the rod is bent, the coordinate system in each element is rotated, and in general differently
in different elements. Any two adjacent systems are rotated through an infinitesimal
relative angle.

Let d¢ be the vector of the angle of relative rotation of two systems at a distance d/ apart
along the rod (we know that an infinitesimal angle of rotation can be regarded as a vector
parallel to the axis of rotation; its components are the angles of rotation about each of the
three axes of coordinates).

To describe the deformation, we use the vector

Q = d¢/dl, (18.1)

which gives the “rate” of rotation of the coordinate axes along the rod. If the deformation
1s a pure torsion, the coordinate system rotates only about the axis of the rod, i.e. about the
{-axis. In this case, therefore, the vector Q is parallel to the axis of the rod, and is just the
torsion angle 7 used in §16. Correspondingly, in the general case of an arbitrary
deformation we can call the component Q, of the vector Q the torsion angle. For a pure
bending of the rod in a single plane, on the other hand, the vector Q has no component Q,
i.e. it lies in the £n-plane at each point. If we take the plane of bending as the £{-plane, then
the rotation is about the n-axis at every point, i.e. Q is parallel to the n-axis.

We take a unit vector t tangential to the rod (regarded as an elastic line). The derivative
dt/dl is the curvature vector of the line; its magnitude is 1/R, where R is the radius of
curvature,t and its direction is that of the principal normal to the curve. The change in a
vector due to an infinitesimal rotation is equal to the vector product of the rotation vector
and the vector itself. Hence the change in the vector t between two neighbouring points of
the elastic line is given by dt = d¢ xt, or, dividing by dI,

de/dl = Qxt. (18.2)
Multiplying this equation vectorially by t, we have
Q = txdt/dl +t(t-Q). (18.3)

The direction of the tangent vector at any point is the same as that of the {-axis at that
point. Hence t - Q = Q,. Using the unit vector n along the principal normal (n = R dt/dl),
we can therefore put

Q = txn/R + Q. (18.4)

The first term on the right is a vector with two components Q,, Q,. The unit vector tXn is
the binormal unit vector. Thus the components Q,, Q, form a vector along the binormal to
the rod, whose magnitude equals the curvature 1/R.

By using the vector Qto characterize the deformation and ascertaining its properties, we
can derive an expression for the elastic free energy of a bent rod. The elastic energy per unit
length of the rod is a quadratic function of the deformation, i.e., in this case, a quadratic

t It may be recalled that any curve in space is characterized at each point by a curvature and a torsion. This
torsion (which w2 shall not use) should not be confused with the torsional deformation, which is a twisting of a
rod about its axis.
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function of the components of the vector Q. It is easy to see that there can be no terms in
this quadratic form proportional to Q,Q and Q,Q;. For, since the rod is uniform along its
length, all quantities, and in particular the energy, must remain constant when the
direction of the positive {-axis is reversed, i.e. when ( is replaced by —{, whereas the
products mentioned change sign.

For Q, = Q, = 0 we have a pure torsion, and the expression for the energy must be that
obtained in §16. Thus the term in Q.2 in the free energy is $CQ.%.

Finally, the terms quadratic in Q, and Q, can be obtained by starting from the
expression (17.7) for the energy of a slightly bent short section of the rod. Let us suppose
that the rod is only slightly bent. We take the £(-plane as the plane of bending, so that the
component €, is zero; there is also no torsion in a slight bending. The expression for the
energy must then be that given by (17.7),i.e. § EI,/R*. We have seen, however, that 1/R%is
the square of the two-dimensional vector (Q;, Q). Hence the energy must be of the form
yEI,Q,? . For an arbitrary choice of the £ and 7 axes this expression becomes, as we know
from mechanics,

1E(1,,9,.2 +21,,9,Q.+ 1,:Q;%),

where I,,, I,;, I, are the components of the inertia tensor for the cross-section of the rod.
It is convenient to take the £ and n axes to coincide with the principal axes of inertia. We
then have simply $ E (I, Q. +1,Q,?), where I,, I, are the principal moments of inertia.
Since the coefficients of Q,* and Q,” are constants, the resulting expression must be valid
for large deflections also.

Finally, integrating over the length of the rod, we obtain the following expression for the
elastic free energy of a bent rod:

Fmd=J}guEQg+§hEQf+§cag}m. (18.5)

Next, we can express in terms of Q the moment of the forces acting on a cross-section of
the rod. This is easily done by again using the results previously obtained for pure torsion
and pure bending. In pure torsion, the moment of the forces about the axis of the rod is Ct.
Hence we conclude that, in the general case, the moment M about the {-axis must be C<);.
Next, in a slight deflection in the £{-plane, the moment about the #-axisis EI,/R. Insucha
bending, however, the vector Q is along the n-axis, so that 1/R is just the magnitude of Q,
and EI,/R = EI,Q. Hence we conclude that, in the general case, we must have M,
= EI, Q,, M, = EI, Q, (the £ and n axes being along the principal axes of inertia in the
cross-section). Thus the components of the moment vector M are

M,=EIl, Q;,, M, =EI,Q,, M, =CQ,. (18.6)
The elastic energy (18.5), expressed in terms of the moment of the forces, is

MZ M2 M2
Fooa= ¢ oy bl 18.7
rod ﬁ&n5+255+2c} (187

An important case of the bending of rods is that of a slight bending, in which the
deviation from the initial position is everywhere small compared with the length of the
rod. In this case torsion can be supposed absent, and we can put Q; = 0, so that (18.4) gives
simply

Q = txn/R = txdt/dl. (18.8)



70 The Equilibrium of Rods and Plates $19

We take a coordinate system x, y, z fixed in space, with the z-axis along the axis of the
undeformed rod (instead of the system &, n, { for each point in the rod), and denote by X, Y
the coordinates x, y for points on the elastic line; X and Y give the displacement of points
on the line from their positions before the deformation.

Since the bending is only slight, the tangent vector t is almost parallel to the z-axis, and
the difference in direction can be approximately neglected. The unit tangent vector is the
derivative t = dr/d! of the position vector r of a point on the curve with respect to its
length. Hence

dt/dl = d*r/dI?> = d%r/dz?;

the derivative with respect to the length can be approximately replaced by the derivative
with respect to z. In particular, the x and y components of this vector are respectively
d*X/dz* and d?Y/dz?. The components Q,, Q, are, to the same accuracy, equal to Q,,Q,,
and we have from (18.8)

Q, = —d?v/dz?, Q, =d*X/dz2. (18.9)

Substituting these expressions in (18.5), we obtain the elastic energy of a slightly bent

rod in the form
d2y\? d2x\?

Here I, and I, are the moments of inertia about the axes of x and y respectively, which are
the principal axes of inertia.

In particular, for a rod with circular cross-section, I, = I, = I, and the integrand is just
the sum of the squared second derivatives, which in the approximation considered is the

square of the curvature:
d2Xx\? + da?Y\* 1
dz? dz? )] T R*’

Hence formula (18.10) can be plausibly generalized to the case of slight bending of a
circular rod having any shape (not necessarily straight) in its undeformed state. To do so,
we must write the bending energy as

F. 4=4%EI (1 ! 2d (18.11
rod = E—R— % 1)

0

where R, is the radius of curvature at any point of the undeformed rod. This expression
has a minimum, as it should, in the undeformed state (R = R,), and for R, — o0 it
becomes formula (18.10).

§19. The equations of equilibrium of rods

We can now derive the equations of equilibrium for a bent rod. We again consider an
infinitesimal element bounded by two adjoining cross-sections of the rod, and calculate
the total force acting on it. We denote by F the resultant internal stress on a cross-section.

t This notation will not lead to any confusion with the free energy, which does not appear in §§19-21.
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The components of this vector are the integrals of o;, over the cross-section:

F, = Jai( df. (19.1)

If we regard the two adjoining cross-sections as the ends of the element, a force F + dF acts
on the upper end, and — F on the lower end; the sum of these is the differential dF. Next,
let K be the external force on the rod per unit length. Then an external force K dl acts on the
element of length d/. The resultant of the forces on the element is therefore dF + K dI. This
must be zero in equilibrium. Thus we have

dF/dl = — K. (19.2)

A second equation is obtained from the condition that the total moment of the forces on
the element be zero. Let M be the moment of the internal stresses on the cross-section. This
is the moment about a point (the origin) which lies in the plane of the cross-section; its
components are given by formulae (18.6). We shall calculate the total moment, on the
element considered, about a point O lying in the plane of its upper end. Then the internal
stresses on this end give a moment M + dM. The moment about O of the internal stresses
on the lower end of the element is composed of the moment — M of those forces about the
origin O’ in the plane of the lower end and the moment about O of the total force — F on
that end. This latter moment is — dlx — F, where dlis the vector of the element of length of
the rod between O’ and 0. The moment due to the external forces K is of a higher order of
smallness. Thus the total moment acting on the element considered is dM + dIXF. In
equilibrium, this must be zero:

dM +dIxF = 0.

Dividing this equation by d/ and using the fact that dl/d! = tis the unit vector tangential to
the rod (regarded as a line), we have

dM/dI = Fxt. (19.3)

Equations (19.2) and (19.3) form a complete set of equilibrium equations for a rod bent in
any manner.

If the external forces on the rod are concentrated, i.e. applied only at isolated points of
the rod, the equilibrium equations at all other points are much simplified. For K = 0 we
have from (19.2)

F = constant, (19.4)

i.e. the stress resultant is constant along any portion of the rod between points where
forces are applied. The values of the constant are found from the fact that the difference
F, — F, of the forces at two points 1 and 2 is

F,—F, = — XK, (19.5)

where the sum is over all forces applied to the segment of the rod between the two points. It
should be noticed that, in the difference F, — F,, the point 2 is further from the point from
which [ is measured than is the point 1; this is important in determining the signs in
equation (19.5). In particular, if only one concentrated force f acts on the rod, and is
applied at its free end, then F = constant = f at all points of the rod.

The second equilibrium equation (19.3) is also simplified. Putting t = dl/d! = dr/dl
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(where r is the radius vector from any fixed point to the point considered) and integrating,
we obtain ,
M = Fxr + constant, (19.6)

since F is constant.

If concentrated forces also are absent, and the rod is bent by the application of
concentrated moments, i.e. of concentrated couples, then F = constant at all points of the
rod, while M is discontinuous at points where couples are applied. the discontinuity being
equal to the moment of the couple.

Let us consider also the boundary conditions at the ends of a bent rod. Various cases are
possible.

The end of the rod is said to be clamped (Fig.4a, §12) if it cannot move either
longitudinally or transversely, and moreover its direction (i.e. the direction of the tangent
to the rod) cannot change. In this case the boundary conditions are that the coordinates of
the end of the rod and the unit tangential vector t there are given. The reaction force and
moment exerted on the rod by the clamp are determined by solving the equations.

The opposite case is that of a free end, whose position and direction are arbitrary. In this
case the boundary conditions are that the force F and moment M must be zero at the end
of the rod.t

If the end of the rod is fixed to a hinge, it cannot be displaced, but its direction can vary.
In this case the moment of the forces on the freely turning end must be zero.

Finally, if the rod is supported (Fig. 4b), it can slide at the point of support but cannot
undergo transverse displacements. In this case the direction t of the rod at the support and
the point on the rod at which it is supported are unknown. The moment of the forces at the
point of support must be zero, since the rod can turn freely, and the force F at that point
must be perpendicular to the rod; a longitudinal force would cause a further sliding of the
rod at this point.

The boundary conditions for other modes of fixing the rod can easily be established in a
similar manner. We shall not pause to add to the typical examples already given.

It was mentioned at the beginning of §18 that a rod with arbitrary cross-section
undergoing large deflections is in general twisted also, even if no external twisting moment
is applied to the rod. An exception occurs when a rod is bent in one of its principal planes,
in which case there is no torsion. For a rod with circular cross-section no torsion results for
any bending (if there is no external twisting moment, of course). This can be seen as
follows. The twisting is given by the component ; = Q- t of the vector Q. Let us calculate
the derivative of this along the rod. To do so, we use the fact that Q, = M,/C:

d dQ;, dM dt
qMO=Cg =gt Mg
Substituting {19.3), we see that the first term is zero, so that
CdQ,/dl = M -dt/dl.

For a rod with circular cross-section, I, = I, = I; by (18.3) and (18.6), we can therefore
write M in the form

M = Eltxdt/dl + tCQ,. (19.7)

+ It a concentrated force f is applied to the free end of the rod. the boundary condition is F = f. not F = 0.
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Multiplying by dt/dl, we have zero on the right-hand side, so that

dQ,/dl =0,
whence
Q, = constant, (19.8)

1.e. the torsion angle is consiant along the rod. If no twisting moments are applied to the
ends of the rod, then € is zero at the ends, and there is no torsion anywhere in the rod.
For a rod with circular cross-section, we can therefore put for pure bending

dr d’r

M = Eltxdt/dl = EI x24T
/ FTRAFTE

(19.9)

Substituting this in (19.3), we obtain the equation for pure bending of a circular rod:

dr d°r dr
1S5S T pxSE .
EI xS = FxG (19.10)
PROBLEMS

PrROBLEM 1. Reduce to quadratures the problem of determining the shape of a rod with circular cross-section
bent in one plane by concentrated forces.

SOLUTION. Let us consider a portion of the rod lying between points where the forces are applied; on such a
portion F is constant. We take the plane of the bent rod as the xy-plane, with the y-axis parallel to the force F,and
introduce the angle 6 between the tangent to the rod and the y-axis. Then dx/d!l = sin 6,dy/d! = cos 6, where x, y
are the coordinates of a point on the rod. Expanding the vector products in (19.10), we obtain the following
equation for 0 as a function of the arc length I: EId?0/dI* — F sin0 = 0. A first integration gives § EI (d8/dl)?
+Fcos¥ =c,, and

de .
\7((. — F cos 0)

The function ¢(/) can be obtained in terms of elliptic functions. The coordinates

= i\/(iEl)j . (1)

X = Jsinl)dl. y = Jcosﬂdl
are
x =% V/[ZEI (¢, — F cos 01)/F?] + constant,
cosddy

=+ EN | 57—
y=+J4d )V(c,—Fcosﬂ)

+ constant. (2)

The moment M (19.9) is parallel to the z-axis, and its magnitude is M = EId¢/dl.

PROBLEM 2. Determine the shape of a bent rod with one end clamped and the other under a force f
perpendicular to the original direction of the rod (Fig. 15).
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SOLUTION. We have F = constant = f everywhere on the rod. At the clamped end (/ = 0), 0 = 4n, and at the
free end (I = L, the length of the rod) M = 0, i.c. @ = 0. Putting (L) = 6,, we have in (1), Problem 1, c,
= fcos B, and

ix

do
= Ve | ot

L
Hence we obtain the equation for 6,:

ix
do
L= EI .
\/Q ) J :;(cos 8y — cos 8)
o
The shape of the rod is given by

x = \/(ZEl/f) [\/(cos()o)— \/(cos 0y —cos 0)],
ix

cos 8 do
y= \/(El/Zf) ,[ :;(co-s_ﬂ_o-— cos?) '
[

ProBLEM 3. The same as Problem 2, but for a force f parallel to the original direction of the rod.

SoLuTION. We have F = —f; the coordinate axes are taken as shown in Fig. 16. The boundary conditions are
0=0for!l=0,0 =0for!l=L. Then

o
dé
| = El ,
\/G m J: ;(COSO —cosbp)
0
where 0, is determined by the equation /(8,) = L. For x and y we obtain

x = JQEI/f) [/(1 - cos8,) — \/(cos 8 — cos 8,)],

[)
cos 8 do
y= J(El/zf)jm'
1)

For a small deflection, 6, < 1, and we can write

[
dé
L= \/(El/f)J' mz—) = fﬂ\/(E’/f)s
0
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i.e. 6, does not appear. This shows that, in accordance with the result of §21, Problem 3, the solution in question
exists only for f > n? EI/4L?, i.e. when the rectilinear shape ceases to be stable.

ProOBLEM 4. The same as Problem 2, but for the case where both ends of the rod are supported and a force fis
applied at its centre. The distance between the supports is Lg.

FiG. 17

SOLUTION. We take the coordinate axes as shown in Fig. 17. The force F is constant on each of the segments
ABand BC, and on each is perpendicular to the direction of the rod at the point of support A or C. The difference
between the values of F on AB and BC is f, and so we conclude that,on AB, Fsin 0, = — 4f, where 0, is the angle
between the y-axis and the line AC. At the point A (I = 0) we have the conditions @ = nrand M = 0,i.e.8 = 0,s0
that on AB

in
| EI sin0, J do 5 \/Elsinﬂocosﬂ
= ,  x= —_—

f Jcos 8 S/
L
in
Elsin#
y= s}n oj Jcos8de.

[
The angle 6, is determined from the condition that the projection of AB on the straight line AC must be 4 L,
whence
ix
Elsin6, cos (0 -6
1n Vo J' s ( o) d6.

f Jsin8
0
For some value 8, lying between 0 and 4= the derivative df/df, (f being regarded as a function of 6,) passes

through zero to positive values. A further decrease in 6, i.¢. increase in the deflection, would mean a decrease in f.
This means that the solution found here becomes unstable, the rod collapsing between the supports.

%Lo=

PROBLEM 5. Reduce to quadratures the problem of three-dimensional bending of a rod under the action of
concentrated forces.

SOLUTION. Let us consider a segment of the rod between points where forces are applied, on which
F = constant. Integrating (19.10), we obtain
dr dr
El —x— = Fxr +cF, (1)
4l de
the constant of integration has been written as a vector cF parallel to F, since, by appropriately choosing the
origin, i.e. by adding a constant vector to r, we can eliminate any vector perpendicular to F. Multiplying (1)
scalarly and vectorially by r’ (the prime denoting differentiation with respect to [), and using the fact that r'-r”
=0 (since r'? = 1), we obtain F-rxr +cF-r =0, EIr" = (Fxr)xr +cFxr'. In components (with the z-axis
parallel to F) we obtain (xy’ — yx')+cz’ = 0, EIz” = — F (xx’ + yy'). Using cylindrical polar coordinates r, ¢, z,
we have

r2¢' +cz =0, ElZ" = —Frr'. (2)
The second of these gives
7 = F(A—-r?)/2El 3)
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where A is a constant. Combining (2) and (3) with the identity r'2 + r2¢’* + 2’2 = 1, we find
rdr

di = ,
JIr? = (r +c?) (A—r? P F}/4E*1?)

and then (2) and (3) give
F I (A—-r*)yrdr
FTE ) i C Py (a- ey
cF (A—r2)dr
2EI .fr JIPF=F(r* ¢ c?) (A—r?/4E? 1]
which gives the shape of the bent rod.

¢ =

PROBLEM 6. A rod with circular cross-section is subjected to torsion (with torsion angle ) and twisted into a
spiral. Determine the force and moment which must be applied to the ends of the rod to keep it in this state.

SOLUTION. Let R be the radius of the cylinder on whose surface the spiral lies (and along whose axis we take
the z-direction) and a the angle between the tangent to the spiral and a plane perpendicular to the z-axis; t":e pitch
h of the spiral is related to a and R by h = 2nRtana. The equation of the spiral is x = Rcos @, y = Rsin ¢,
z = ¢Rtana, where ¢ is the angle of rotation about the z-axis. The element of length is d/ = (R/cos a)d¢.
Substituting these expressions in (19.7), we calculate the components of the vector M, and then the force F from
formula (19.3); F is constant everywhere on the rod. The result is that the forcs F is parallel to the z-axis and its
magpnitude is F = F, = (Ct/R)sina — (EI/R?)cos? asina. The moment M has a z-component M, = Ctsina
+(EI/R)cos®a and a ¢-component, along the tangent to the cross-section of the cylinder, M, = FR.

PROBLEM 7. Determine the form of a flexible wire (whose resistance to bending can be neglected in
comparison with its resistance to stretching) suspended at two points and in a gravitation field.

SoLuTION. We take the plane of the wire as the xy-plane, with the y-axis vertically downwards. In equation
(19.3) we can neglect the term dM/dI, since M is proportional to EI. Then Fxt = 0, i.e. F is parallel to t at every
point, and we can put F = Ft. Equation (19.2) then gives

d/ dx d/ dy
—\F—]=0, —|\F—)=q,
di\ di di\ dl

where g is the weight of the wire per unit length; hence F dx/dl = ¢, Fdy/dl = gl,andso F = \/(cz + q*1?),s0 that
dx/dl = A/\/(Az +12), dy/dl = 1/./(A* + ), where A =c/q. Integration gives x = Asinh ' (I/4), y =
\/(A’ +1%), whence y = A cosh (x/A), i.e. the wire takes the form of a catenary. The choice of origin and the
constant A are determined by the fact that the curve must pass through the two given points and have a given
length.

§20. Small deflections of rods

The equations of equilibrium are considerably simplified in the important case of small
deflections of rods. This case holds if the direction of the vector t tangential to the rod
varies only slowly along its length, i.e. the derivative dt/dl is small. In other words, the
radius of curvature of the bent rod is everywhere large compared with the length of the
rod. In practice, this condition amounts to requiring that the transverse deflection of the
rod be small compared with its length. It should be emphasized that the deflection need not
be small compared with the thickness of the rod, as it had to be in the approximate theory
of small deflections of plates given in §§11-12.1

Differentiating (19.3) with respect to the length, we have

d‘M dF dt

t We shall not give the complex theory of the bending of rods which are not straight when undeformed, but
only consider one simple example (see Problems 8 and 9).
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The second term contains the small quantity dt/dl, and so can usually be neglected (some

exceptional cases are discussed below). Substituting in the first term dF/dl = — K, we
obtain the equation of equilibrium in the form
d*M/dl? = txK. (20.2)

We write this equation in components, substituting in it from (18.6) and (18.9)
M, = —EIY", M, =EI, X", M, =0, (20.3)

where the prime denotes differentiation with respect to z. The unit vector t may be
supposed to be parallel to the z-axis. Then (20.2) gives

ELLX"™M-K, =0, EI,YM-K, =0 (20.4)

These equations give the deflections X and Yas functions of z, i.e. the shape of a slightly
bent rod.

The stress resultant F on a cross-section of the rod can also be expressed in terms of the
derivatives of X and Y. Substituting (20.3) in (19.3), we obtain

F,= —ELX", F,=—ELY". (20.5)

We see that the second derivatives give the moment of the internal stresses, while the third
derivatives give the stress resultant. The force (20.5) is called the shearing force. If the
bending is due to concentrated forces, the shearing force is constant along each segment of
the rod between points where forces are applied, and has a discontinuity at each of these
points equal to the force applied there.

The quantities EI, and EI, are called the flexural rigidities of the rod in the xz and yz
planes respectively.t

If the external forces applied to the rod act in one plane, the bending takes place in one
plane, though not in general the same plane. The angle between the two planes is easily
found. If a is the angle between the plane of action of the forces and the first principal plane
of bending (the xz-plane), the equations of equilibrium become X = (K/I,E)cosa,
Y ™) = (K/I,E)sin oa. The two equations differ only in the coefficient of K. Hence X and Y
are proportional, and Y= (X1,/I,)tana. The angle 6 between the plane of bending and
the xz-plane is given by

tan0 = (I,/1,)tana. (20.6)

For a rod with circular cross-section I, = F, and a = 6, i.e. the bending occurs in the plane
of action of the forces. The same is true for a rod with any cross-section when a = 0, i.e.

t An equation of the form
DX™M_K_ =0 (20.4a)

also describes the bending of a thin plate in certain limiting cases. Let a rectangular plate (with sides a, b and
thickness 4) be fixed along its sides a (parallel to the y-axis) and bent along its sides b (parallel to the z-axis) by a
load uniform in the y-direction. In the general case of arbitrary aand b, the two-dimensional equation (12.5), with
the appropriate boundary conditions at the fixed and free edges, must be used to determine the bending. In the
limiting case a > b, however, the deformation may be regarded as uniform in the y-direction, and then the two-
dimensional equilibrium equation becomes of the form (20.4a), with the flexural rigidity replaced by
D = Eh*a/12(1 — ¢?). Equation (20.4a) is also applicable to the opposite limiting case a < b, when the plate can
be regarded as a rod of length b with a narrow rectangular cross-section (a rectangle with sides a and h); in this
case. however, the flexural rigidity is D = EI, = Eh3a/12.
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when the forces act in a principal plane. The magnitude of the deflection { = \/ (X*+Y?)
satisfies the equation

EI{™ =K, [I=11,/\/(I,*cos®a+I,2sin’a). (20.7)
The shearing force F is in the same plane as K, and its magnitude is
F = —EI{". (20.8)

Here I is the “effective” moment of inertia of the cross-section of the rod.

We can write down explicitly the boundary conditions on the equations of equilibrium
for a slightly bent rod. If the end of the rod is clamped, we must have X = Y = 0 there, and
also X' = Y’ = 0, since its direction cannot change. Thus the conditions at a clamped end

are
X=Y=0, X =Y'=0. (20.9)

The reaction force and moment at the point of support are determined from the known
solution by formulae (20.3) and (20.5).

When the bending is sufficiently slight, the hinging and supporting of a point on the rod
are equivalent as regards the boundary conditions. The reason is that, in the latter case, the
longitudinal displacement of the rod at its point of support is of the second order of
smallness compared with the transverse deflection, and can therefore be neglected. The
boundary conditions of zero transverse displacement and moment give

X=Y=0, X'"=Y"=0. (20.10)
The direction of the end of the rod and the reaction force at the point of support are

obtained by solving the equations.

Finally, at a free end, the force F and moment M must be zero. According to (20.3) and
(20.5), this gives the conditions

X'=Y"=0, X"=Y"=0. (20.11)

If a concentrated force is applied at the free end, then F must be equal to this force, and not
to zero.

It is not difficult to generalize equations (20.4) to the case of a rod with variable cross-

section. For such a rod the moments of inertia I, and I, are functions of z. Formulae (20.3),
which determine the moment at any cross-section, are still valid. Substitution in (20.2) now

gives
d? a2y d? d:x
in which I, and I, must be differentiated. The shearing force is
d d?x d dry
F.=-E—\|I,— F=-E—|I,—). 20.13
* dz<2d22>’ Y dz<'dzz> ( )

Let us return to equations (20.1). Our neglect of the second term on the right-hand side
may in some cases be illegitimate, even if the bending is slight. The cases involved are those
in which a large internal stress resultant acts along the rod, i.e. F, is very large. Such a force
is usually caused by a strong tension of the rod by external stretching forces applied to its
ends. We denote by T the constant lengthwise stress F,. If the rod is strongly compressed
instead of being extended, T will be negative. In expanding the vector product F xdt/dl we
must now retain the terms in T, but those in F, and F can again be neglected. Substituting
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X",Y", 1 for the components of the vector dt/dl, we obtain the equations of equilibrium in
the form _
LEX™_TX"-K, =0, }

. 20.14
LEY®™_TY”—-K,=0. ( )

The expressions (20.5) for the shearing force will now contain additional terms giving the
projections of the force T (along the vector t) on the x and y axes:

F,= —ELX"+TX, F,=—ELY"4+TY". (20.15)

These formulae can also, of course, be obtained directly from (19.3).

In some cases a large force T can result from the bending itself, even if no stretching
forces are applied. Let us consider a rod with both ends clamped or hinged to fixed
supports, so that no longitudinal displacement is possible. Then the bending of the rod
must result in an extension of it, which leads to a force Tin the rod. It is easy to estimate the
magnitude of the deflection for which this force becomes important. The length L + AL of
the bent rod is given by

L

L+AL =f\/(1+X'2+Y'2)dz,
V]

taken along the straight line joining the points of support. For slight bending the square
root can be expanded in series, and we find

L
AL ={J.(X’2+Y'2)dz.
(1]

The stress force in simple stretching is equal to the relative extension multiplied by
Young’s modulus and by the area S of the cross-section of the rod. Thus the force T is

r=2

7L (X'2+Y'?)dz. (20.16)

Oy ~

If 4 is the order of magnitude of the transverse bending, the derivatives X’ and Y ' are of
the order of §/L, so that the integral in (20.16) is of the order of 62/L,and T ~ ES (6/L)>.
The orders of magnitude of the first and second terms in (20.14) are respectively EI§/L*
and T6/L? ~ ES63/L*. The moment of inertia I is of the order of h* and S ~ h?, where his
the thickness of the rod. Substituting, we easily find that the first and second terms in
(20.14) are comparable in magnitude if & ~ h. Thus, when a rod with fixed ends is bent, the
equations of equilibrium can be used in the form (20.4) only if the deflection is small in
comparison with the thickness of the rod. If § is not small compared with h (but still, of
course, small compared with L), equations (20.14) must be used. The force T in these
equations is not known a priori. It must first be regarded as a parameter in the solution,
and then determined by formula (20.16) from the solution obtained; this gives the relation
between T and the bending forces applied to the rod.

The opposite limiting case is that where the resistance of the rod to bending is small
compared with its resistance to stretching, so that the first terms in equations (20.14) can be
neglected in comparison with the second terms. Physically this case can be realized either
by a very strong tension force T or by a small value of EI, which can result from a small
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thickness h. Rods under strong tension are called strings. In such cases the equations of

equilibrium are
TX"+K,=0, TY"+K,=0. (20.17)

The ends of the string are fixed, in the sense that their coordinates are given, i.e.
X=Y=0. (20.18)

The direction of the ends cannot be decided arbitrarily, but is given by the solution of the
equations.

In conclusion, we may show how the equations of equilibrium of a slightly bent rod may
be obtained from the variational principle, using the expression (18.10) for the elastic
energy:

Fog= 515'[{1, Y2+ 1,X"?}dz.

In equilibrium the sum of this energy and the potential energy due to the external forces K
acting on the rod must be a minimum, i.e. we must have 6F 4 — [(K,6X + K,8Y)dz = 0,
where the second term is the work done by the external forces in an infinitesimal
displacement of the rod. In varying F, 4, we effect a repeated integration by parts:

iéjX“Zdz = jx%sx' dz
=[X"8X'] - JX”’&X’ dz

=[X"0X']-[X"6X] + ‘[X WX dz,
and similarly for the integral of Y""2. Collecting terms, we obtain

J[(EI, Y® — K,)8Y+ (EI,X ™ — K, )6X Jdz +
+EL[(Y'8Y —Y"8Y)]+EL,[(X"6X' — X""6X)] = O.

The integral gives the equilibrium equations (20.4), since the variations X and 8Y are
arbitrary. The integrated terms give the boundary conditions on these equations; for
example, at a free end the variations 6 X, 8Y, X', §Y’ are arbitrary, and the corresponding
conditions (20.11) are obtained. Also, the coefficients of §X and 8Yin these terms give the
expressions (20.5) for the components of the shearing force, and those of §X ' and 8Y’ give
the expressions (20.3) for the components of the bending moment.

Finally, the equations of equilibrium (20.14) in the presence of a tension force 7 can be
obtained by the same method if we include in the energy a term TAL = $T[ (X2 + Y'?)dz,
which is the work done by the force T over a distance AL equal to the extension of the rod.

PROBLEMS

ProBLEM 1. Determine the shape of a rod (with length /) bent by its own weight, for various modes of
support at the ends.

SOLUTION. The required shape is given by a solution of the equation (") = g/EI, where q is the weight per unit
length, with the appropriate boundary conditions at its ends, as shown in the text. The following shapes and
maximum displacements are obtained for various modes of support at the ends of the rod. The origin is at one
end of the rod in each case.
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(a) Both ends clamped:
{ = qz*(z - 1)*/24El, {(41) = qI*/384El

(b) Both ends supported:
{ = qz(2® - 2iz% + I)/24E1, {(31) = 5qI*/384EI

(c) One end (z = ) clamped, the other supported:
{ = qz(2z® — 3Iz% + I%)/48E], {(0-421) = 0-0054qI*/EI.
(d) One end (z = 0) clamped, the other free:
{ = qz%(z* — 4z + 61%)/24EI,  [(I) = ql*/8EL

PROBLEM 2. Determine the shape of a rod bent by a force f applied to its mid-point.

SOLUTION. We have (") = 0 everywhere except at z = 1. The boundary conditions at the ends of the rod (z
=0 and z = [) are determined by the mode of support; at z = 4/, {, {’ and {” must be continuous, and the
discontinuity in the shearing force F = — EI{’” must be equal to f.

The shape of the rod (for 0 < z < 41) and the maximum displacement are given by the following formulae:

(a) Both ends clamped:

{ = f2*(31 — 42)48El, tdh = fP/192EL
(b) Both ends supported:

{ =fz(31> —4z*)/48El,  [(}]) = fI/48EI.

The rod is symmetrical about its mid-point, so that the functions {(z) in 4/ < z <[ are obtained simply by
replacing z by | —z.

PrROBLEM 3. The same as Problem 2, but for a rod clamped at one end (z = 0) and free at the otherend (z = 1),
to which a force f is applied.

SoLUTION. At all points of the rod F = constant = f, so that {"" = — f/EI. Using the conditions{ = 0,{' =0
for z =0, {” = 0 for z = |, we obtain

{=f2231-2)/6EI,  ((l)=fI/3EL

PROBLEM 4. Determine the shape of a rod with fixed ends, bent by a couple at its mid-point.

SoLuTION. Atall points of the rod (") = 0,and at z = 4/ the moment M = EI{" has a discontinuity equal to
the moment m of the applied couple. The results are:

(a) Both ends clamped:
{ =mz*(1-22)/8EIl for 0<z<4l
{=-m(—-2?0-2(1-2)]/8Ell for d<z<l
(b) Both ends hinged:
{ =mz(I* —4z%)/24Ell for 0<z<#,
= —m(l-2)[I* -4(1-2)*]/24Ell for il<z<l
The rod is bent in opposite directions on the two sides of z = 41.
PROBLEM 5. The same as Problem 4, but for the case where one end is clamped and the other end free, the
couple being applied at the latter end.
SoLuTiON. Atall points of therod M = EI{” = m,and at z = O we have { = 0,{’ = 0. The shape is given by {
= mz*/2EI.
PROBLEM 6. Determine the shape of a circular rod with hinged ends stretched by a force Tand bent by a force
S applied at its mid-point.
SOLUTION. On the segment 0 < z < 4/ the shearing force is 4/, so that (20.15) gives the equation
(" -T{/EI = - f]2EL

The boundary conditionsare{ = " = Oforz = 0and /;{’ = Ofor z = 4! (since {’ is continuous). The shape of the
rod (in the segment 0 < z < 1) is given by

L sinh kz ~
(= Ei(z - kcoshw)‘ k= /(T/ED,
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For small k this gives the result obtained in Problem 2 (b). For large k it becomes { = fz/27, i.., in accordance
with equations (20.17), a flexible wire under a force f takes the form of two straight pieces intersecting at z = 3.

If the force T is due to the stretching of the rod by the transverse force, it must be determined by formula
(20.16). Substituting the above result, we obtain the equation

173 1 1 3 1 8E?
—| =+ =tanh?_kl ~ —tanh -kl | = ——,
k°[2+2 AN Tty ] 775
which determines T as an implicit function of f.

PROBLEM 7. A circular rod with infinite length lies in an elastic substance, i.e. when it is bent a force K =
— a{ proportional to the deflection acts on it. Determine the shape of the rod when a concentrated force facts on
it

SOLUTION. We take the origin at the point where the force f is applied. The equation EI{™) = —«{ holds
everywhere except at z = 0. The solution must satisfy the condition { =0atz = + —oco,andatz = 0{"and {"
must be continuous; the difference between the shearing forces F = — EI{" for z » 0+ and z — 0 — must be f.

The required solution is

s

C= SR

e ?:l(cos B|z| +sinBlz|], B = (é—;)m.

ProBLEM 8. Derive the equation of equilibrium for a slightly bent thin circular rod which, in its undeformed
state, is an arc of a circle and is bent in its plane by radial forces.

SoLuTioN. Taking the origin of polar coordinates r, ¢ at the centre of the circle, we write the equatior: of the
deformed rod as r = a + {(¢), where a is the radius of the arc and { a small radial displacement. Using the
expression for the radius of curvature in polar coordinates, we find as far as the first order in {

1 rP=r"+2rt 1 [+

~

R~ (PP+r}? “a o

where the prime denotes differentiation with respect to ¢. According to (18.11), the elastic bending energy is

¢0 ¢0
F —§£1I<l l)z d —E'I "y d
rod = R a a ¢—'§F (€ +")"de,
0 0

¢, being the angle subtended by the arc at its centre. The equation of equilibrium is obtained from the variational
principle
o

OF g — I 6(K,ado =0,
0
where K, is the external radial force per unit length, with the auxiliary condition
o
'[ {d¢ =0,
[

which is, in this approximation, the statement of the fact that the total length of the rod is unchanged, i.e. it
undergoes no general extension. Using Lagrange’s method, we put

b0 b0
OF 1og - j aK,8{d¢ + aa'[ 8(d¢ =0,
0o 0

where « is a constant. Varying the integrand in F, 4 and integrating the 8{” term twice by parts, we obtain
El v 1 piiv) EI e EI_
73 EH27+ 1) —aK, +aa 060dé + [ +{)60] ~ — [+ = 0.

Hence we find the equation of equilibrium#t

EIQ™M 420" +{)/a* - K, +a =0, (1)

t In the absence of external forces, K, = 0 and a = 0; the non-zero solutions of the resulting homogeneous
equation correspond to a simple rotation or translation of the whole rod.
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the shearing force F = — EI({’ +{"")/a®, and the bending moment M = EI({ +{")/a? cf. the end of §20. The
constant « is determined from the condition that the rod as a whole be not stretched.

PROBLEM 9. Determine the deformation of a circular ring bent by two forces f applied along a diameter
(Fig. 18).

D

FiG. 18

SOLUTION. Integrating equation (1), Problem 8, along the circumference of the ring, we have 2naa =

]K,a d¢ = 2f. We have equation (1) with K, = 0 everywhere except at ¢ =0 and ¢ = n:
(W) + 20" +{ + fa*/nEIl = 0.

The required deformation of the ring is symmetrical about the diameters AB and CD, and so we must have{' = 0
at A, B, C and D. The difference in the shearing forces for ¢ — 0 + must be f. The solution of the equation of
equilibrium which satisfies these conditions is
L
T El
In particular, the points A and B approach through a distance

fa*(n 2
|C(0)+C(ﬂ)l=E iR

1 1 1
{ <;+z¢cos¢——§ncos¢—3sin¢>, 0<¢d<m

§21. The stability of elastic systems

The behaviour of a rod subject to longitudinal compressing forces is the simplest
example of the important phenomenon of elastic instability, first discovered by L. Euler.

In the absence of transverse bending forces K, , K, the equations of equilibrium (20.14)
for a compressed rod have the evident solution X = Y = 0, which corresponds to the rod’s
remaining straight under a longitudinal force |T'|. This solution, however, gives a stable
equilibrium of the rod only if the compressing force | T} is less than a certain critical value
T, . For |T| < T, the straight rod is stable with respect to any small perturbation. In
other words, if the rod is slightly bent by some small force, it will tend to return to its
original position when that force ceases to act.

If, on the other hand, |T| > T, the straight rod is in unstable equilibrium. An
infinitesimal bending suffices to destroy the equilibrium, and a large bending of the rod
results. It is clear that, if this is so, the compressed rod cannot actually remain straight.

The behaviour of the rod after it ceases to be stable must satisfy the equations for
bending with large deflections. The value T, of the critical load, however, can be obtained
from the equations for small deflections. For |T| = T, the straight rod is in neutral
equilibrium. This means that, besides the solution X = Y =0, there must also be states
where the rod is slightly bent but still in equilibrium. Hence the critical value of T is the
value of |T'| for which the equations

ELXW4|T|X" =0, EILY™4+|T|Y"=0 (21.1)
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have a non-zero solution. This solution gives also the nature of the deformation of the rod
immediately after it ceases to be stable.

The following Problems give some typical cases of the loss of stability in various elastic
systems.

PROBLEMS
PrOBLEM 1. Determine the critical compression force for a rod with hinged ends.

SOLUTION. Since we are seeking the smallest value of | 7| for which equations (21.1) have a non-zero solution,
it is sufficient to consider only the e%pation which contains the smaller of /, and I,. Let I, < I,. Then we seek a
solution of the equation EI,X™ 4|T|X” =0 in the form X = A+ Bz+Csinkz+ Dcoskz, where
k= \/(lTl/Elz )- The non-zero solution which satisfies the conditions X = X” =0 for z=0 and z =1
is X = Csin kz, with sin kI = 0. Hence we find the required critical force to be T, = n?El,/I>. On ceasing to be
stable, the rod takes the form shown in Fig. 19a.

T T
(b) (c)
T
T
Zi o
FiG. 19

PROBLEM 2. The same as Problem 1, but for a rod with clamped ends (Fig. 19b).
SOLUTION. T, = 4n?El,/I%.

PROBLEM 3. The same as Problem 1, but for a rod with one end clamped and the other free (Fig. 19¢).

SOLUTION. T, = n®El, /4%

PROBLEM 4. Determine the critical compression force for a circular rod with hinged ends in an elastic medium
(see §20, Problem 7).

SoLuTION. The equations (21.1) must now be replaced by EIX ) +|T|X"” + aX = 0. A similar treatment

gives the solution X = A sinnnz/I,
nEl al*
T,=——\n+5—=].
¢ ? ( nn*El )

where nis the integer for which T, is least. Where a is large, n > 1, i.e. the rod exhibits several undulations as soon
as it ceases to be stable.

PROBLEM 5. A circular rod is subjected to torsion, its ends being clamped. Determine the critical torsion
beyond which the straight rod becomes unstable.

SoLuTioN. Thecritical value of the torsion angle is determined by the appearance of non-zero solutions of the
equations for slight bending of a twisted rod. To derive these equations, we substitute the expression (19.7) M
= Elt x dt/dl + Ctt, where 1 is the constant torsion angle, in equation (19.3). This gives

d?t dt

Eltx— +Ct— —Frt=0.
PTG

We differentiate; since the bending is not large, t may be regarded as a constant vector t, along the axis of the rod
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(the z-axis) in differentiating the first and third terms. Since also dF/dl = 0 (there being no external forces except
at the ends of the rod), we obtain

d3t d%t
EI'OXEF+C13_F = 0,

or, in components, ,

YO X" =0,

X0V 40y = 0,
where k = Ct/El. Taking as the unknown function & = X +iY, we obtain £ — ix&” = 0. We seek a solution
which satisfies the conditions ¢ = 0,¢ = Ofor z = Oand z = |, in the form ¢ = a(l + ixz — e**) + bz?, and obtain
as the compatibility condition of the equations for a and b- the relation ¢! = (2 + ixl)/(2 - ixl), whence
1kl = tan{«l. The smallest root of this equation is 4« = 4-49, so that t, = 8-98EI/CI.

PRrOBLEM 6. The same as Problem S, but for a rod with hinged ends.
SOLUTION. In this case we have ¢ = a(l — e™* — 4x?2?) + bz, where « is given by
e =1, ie. kl =2n.
Hence the required critical torsion angle is 1, = 2nEI/Cl.
PROBLEM 7. Determine the limit of stability of a vertical rod under its own weight, the lower end being
clamped.

SoLuTION. If the longitudinal stress F, = T varies along the rod, d F,/dl # 0 in the first term of (20.1), and
equations (20.14) are replaced by

LEX®™_(TX'y —K, =0,
LEY™M —(TY'Y-K,=0.

In the case considered, there are no transverse bending forces anywhere in the rod,and T = —gq(/ - z), where g is
the weight of the rod per unit length and z is measured from the lower end. Assuming that I, < I,, we consider
the equation

LEX" =TX' = —q(-2)X";
for z = I, X" = 0 automatically. The general integral of this equation for the function u = X’ is
u = n*laJ _y(n)+bJy(m),

n=4./[all—2/El,).
The boundary conditions X’ = 0 for z = 0 and X" = 0 for z = ! give for the function u(n) the conditions u = 0
for n = no = 4/ (gP’/EL,), wn'"> = 0 for n = 0. In order to satisfy these conditions we must put b = 0 and
J _4(no) = 0.The smallest root of this equation is n, = 1-87, and so the critical length is I, = 1'98(EI,/q)' .

where

PROBLEM 8. A rod has an elongated cross-section, so that I, » I,. One end is clamped and a force fis applied
to the other end, which is free, so as to bend it in the principal xz-plane (in which the flexural rigidity is EI,).
Determine the critical force f, at which the rod bent in a plane becomes unstable and the rod is bent sideways (in
the yz-plane), at the same time undergoing torsion.

SoLuTiON. Since the rigidity EI, is large compared with EI, (and with the torsional rigidity C),t the instability
as regards sideways bending occurs while the deflection in the xz-plane is still small. To determine the point where
instability sets in, we must form the equations for slight sideways bending of the rod, retaining the terms
proportional to the products of the force f in the xz-plane and the small displacements. Since there is a
concentrated force only at the free end of the rod, we have F = f at all points, and at the free end (z = /) the
moment M = 0; from formula (19.6) we find the components of the moment relative to a fixed system of
coordinates x, y, zz M, =0, M, = (I-z2)f, M, = (Y- Y,)f, where Y, = Y(l). Taking the components along
coordinate axes &, n, { fixed at each point to the rod, we obtain as far as the first-order terms in the displacements
M,=¢(-2)f, M, = (I-2)f, M = (I-2)fdY/dz + f(Y—Yo), where ¢ is the total angle of rotation of a cross-
section of the rod under torsion; the torsion angle t = d¢/dz is not constant along the rod. According to (18.6)
and (18.9), however, we have for a small deflection

M= —ELY", M,=ELX", M,=C¢};

t For example, for a narrow rectangular cross-section with sides b and h (b » h), we have EI, = bh*E/12,
El, = b*hE/12, C = bh3y/3.
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comparing, we obtain the equations of equilibrium
ElLX" =(-2)f, ELY' = —¢(-2),
Co=(-2Y+(Y-Yo)f.
The first of these equations gives the main bending of the rod, in the xz-plane; we require the value of f for
which non-zero solutions of the second and third equations appear. Eliminating Y, we find
¢ +k¥(—2)*¢ =0, k* = f2/EI,C.
The general integral of this equation is
¢ =a/(1-2) 5[ k(-2 1+ b/ (1 - 2)J _4[3k(l —2)*).

At the clamped end (z = 0) we must have ¢ = 0, and at the free end the twisting moment C¢’ = 0. From the
second condition we have a = 0, and then the first gives J_i(iklz) = 0. The smallest root of this equation is

4ki? = 2006, whence f,, = 401,/ (EI1,C)/I%.



CHAPTER 111

ELASTIC WAVES

§22. Elastic waves in an isotropic medium

IF motion occurs in a deformed body, its temperature is not in general constant, but varies
in both time and space. This considerably complicates the exact equations of motion in the
general case of arbitrary motions.

Usually, however, matters are simplified in that the transfer of heat from one part of the
body to another (by simple thermal conduction) occurs very slowly. If the heat exchange
during times of the order of the period of oscillatory motions in the body is negligible, we
can regard any part of the body as thermally insulated, i.e. the motion is adiabatic. In
adiabatic deformations, however, 6, is given in terms of u;, by the usual formulae, the only
difference being that the ordinary (isothermal) values of E and ¢ must be replaced by their
adiabatic values (see §6). We shall assume in what follows that this condition is fulfilled,
and accordingly E and o in this chapter will be understood to have their adiabatic values.

In order to obtain the equations of motion for an elastic medium, we must equate the
internal stress force do,, /0x, to the product of the acceleration #; and the mass per unit
volume of the body, i.e. its density p:

pli; = 00;,/0x,. (22.1)

This is the general equation of motion.t
In particular, the equations of motion for an isotropic elastic medium can be written
down at once by analogy with the equation of equilibrium (7.2). We have

__E E
“0+0 " 20T 9020

P grad divu. (22.2)

Since all deformations are supposed small, the motions considered in the theory of
elasticity are small elastic oscillations or elastic waves. We shall begin by discussing a plane
elastic wave in an infinite isotropic medium, i.e. a wave in which the deformation uis a
function only of one coordinate (x, say) and of the time. All derivatives with respect to y
and z in equations (22.2) are then zero, and we obtain for the components of the vector u
the equations

Gus 19U _o W _1%%_ (22.3)

t Itis assumed that the velocity v of a point in the medium is equal to the derivative @ of its displacement. We
must emphasize, however, that the identity of these two quantities is by no means self-evident. In crystals, uis the
displacement of a lattice site, but v is defined in continuum mechanics as the momentum of unit mass of the
substance. The equation v = a s, strictly speaking, valid only for perfect crystals, with one atom at every lattice
site and none elsewhere. If the crystal contains defects (vacancies or interstitial atoms), mass transport relative to
the lattice (i.c. a non-zero momentum) can occur even without deformation of the lattice if there is diffusion of
defects through it. The identity of v and & implies that such effects are neglected. on the grounds that diffusion is
slow or that the defect concentration is low.

87
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(the equation for u, is the same as that for u); heret

_ [__E(-9 S
“= \/p(1+a)(1—2a)’ “= \/2p(1+a)' (224)

Equations (22.3) are ordinary wave equations in one dimension, and the quantities ¢,
and ¢, which appear in them are the velocities of propagation of the wave. We see that the
velocity of propagation for the component u, is different from that for u, and u,.

Thus an elastic wave is essentially two waves propagated independently. In one (u, ) the
displacement is in the direction of propagation; this is called the longitudinal wave, and is
propagated with velocity ¢,. In the other wave (u,, u,) the displacement is in a plane
perpendicular to the direction of propagation; this is called the transverse wave, and is
propagated with velocity c,. It is seen from (22.4) that the velocity of longitudinal waves is
always greater than that of transverse waves: we always have}

¢ > (@/3)k,. (22.5)

The velocities ¢, and c, are often called the longitudinal and transverse velocities of sound.

We know that the volume change in a deformation is given by the sum of the diagonal
terms in the strain tensor, i.e. by u; = div u. In the transverse wave there is no component
u,, and, since the other components do not depend on y or z, divu = 0 for such a wave.
Thus transverse waves do not involve any change in volume of the parts of the body. For
longitudinal waves, however, divu # 0, and these waves involve compressions and
expansions in the body.

The separation of the wave into two parts propagated independently with different
velocities can also be effected in the general case of an arbitrary (not plane) elastic wave in
an infinite medium. We rewrite equation (22.2) in terms of the velocities ¢, and ¢,:

b =c2lu+(c?—c?) graddivu. (22.6)
We then represent the vector u as the sum of two parts:
u=u-+u, (22.7)
of which one satisfies
divy, =0 (22.8)
and the other satisfies
curluy, = 0. (22.9)

We know from vector analysis that this representation (i.e. the expression of a vector as the
sum of the curl of a vector and the gradient of a scalar) is always possible.
Substituting u = u; + u, in (22.6), we obtain

0 +0 =c2AW+u)+ (¢? —c?)graddivu,. (22.10)
We take the divergence of both sides. Since divu, = 0, the result is
divy, = c2Adivy + (¢, —c2)A divy,

or div(, — ¢,2 Aw;) = 0. The curl of the expression in parentheses is also zero, by (22.9). If

t We may give also expressions for ¢, and ¢, in terms of the moduli of compression and rigidity and the Lam¢
coefﬁqents: ¢, = V{BK+4p)/3p) = J{(A+2u)/p}, ¢, = Vw/p).
t Since ¢ actually varies only between 0 and 4 (see the second footnote to §5), we always have ¢, > \/ 2c,.
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the curl and divergence of a vector both vanish in all space, that vector must be zero
identically. Thus
d%u,

Ez———c,zAu, =0. (22.11)

Similarly, taking the curl of equation (22.10) we have, since the curls of u, and of any
gradient are zero, curl (4, —c¢,>Au,) =0. Since the divergence of the expression in
parentheses is also zero, we obtain an equation of the same form as (22.11):

0%u
Fz'—c,ZAu, =0. (22.12)

Equations (22.11) and (22.12) are ordinary wave equations in three dimensions. Each of
them represents the propagation of an elastic wave, with velocity ¢, and c, respectively. One
wave (u,) does not involve a change in volume (since divu, = 0), while the other (u,) is
accompanied by volume compressions and expansions.

In a monochromatic elastic wave, the displacement vector is

u = re{up(r)e” '}, (22.13)
where u, is a function of the coordinates which satisfies the equation
¢t Aug + (¢, — ¢,?) grad divuy + w?u, = 0, (22.14)

obtained by substituting (22.13) in (22.6). The longitudinal and transverse parts of a
monochromatic wave satisfy the equations

Aut+kluy =0,  Au+k’u =0, (22.15)

where k, = w/c,, k, = w/c, are the wave numbers of the longitudinal and transverse waves.

Finally, let us consider the reflection and refraction of a plane monochromatic elastic
wave at the boundary between two different elastic media. It must be borne in mind that
the nature of the wave is in general changed when it is reflected or refracted. If a purely
transverse or purely longitudinal wave is incident on a surface of separation, the resultis a
mixed wave containing both transverse and longitudinal parts. The nature of the wave
remains unchanged (as we see from symmetry) only when it is incident normally on the
surface of separation, or when a transverse wave whose oscillations are parallel to the
plane of separation is incident (at any angle).

The relations giving the directions of the reflected and refracted waves can be obtained
immediately from the constancy of the frequency and of the tangential components of
the wave vector.t Let 6 and 6’ be the angles of incidence and reflection (or refraction)and c,
¢’ the velocities of the two waves. Then

sin 0

mv_< (22.16)
sinf ¢

For example, let the incident wave be transverse. Then ¢ = ¢, is the velocity of
transverse waves in medium 1. For the transverse reflected wave we have ¢’ = ¢,, also, so

t See FM, §66. The arguments given there are applicable in their entirety.

I0e-o
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that (22.16) gives 8 = @', i.e. the angle of incidence is equal to the angle of reflection. For the
longitudinal reflected wave, however, ¢’ = ¢;;, and so

sinf ¢,

sinf ¢,

For the transverse part of the refracted wave ¢’ = ,,, and for a transverse incident wave
sinf ¢,
sind ¢,

Similarly, for the longitudinal refracted wave

sinf ¢,
sinf ¢,
PROBLEMS

PROBLEM 1. Determine the reflection coefficient for a longitudinal monochromatic wave incident at any
angle on the surface of a body (with a vacuum outside).t

Fi1G. 20

SoLUTION. When the wave is reflected, there are in general both longitudinal and transverse reflected waves. It
is clear from symmetry that the displacement vector in the transverse reflected wave lies in the plane of incidence
(Fig. 20, where ng, n, and n, are unit vectors in the direction of propagation of the incident, longitudinal reflected
and transverse reflected waves, and uy, u,, u, the corresponding displacement vectors). The total displacement in
the body is given by the sum (omitting the common factor e~ ‘' for brevity)

u=Agnge™ T4 Ane™ T+ 4 axn e,

where a is a unit vector perpendicular to the plane of incidence. The magnitudes of the wave vectors are k, =
k, = w/c;, k, = w/c,, and the angles of incidence 6, and of reflection 6,, 6, are related by 6, = 8, sin6, =
(¢;/c;) sinB,. For the components of the strain tensor at the boundary we obtain

u,, = iko(Ag + A))cos? O, +iA,k,cos0,5in6,, u, = iko(Ag+ A)),
u,, = iko(Ao — A;)sin B cos 0, + 4iA, k, (cos6, — sin6,).

again omitting the common exponential factor. The components of the stress tensor can be calculated from the
general formula (5.11), which can here be conveniently written

o = 2pctuy + ple — 2¢, )by

t The more general case of the reflection of sound waves from a solid-liquid interface, and the similar problem
of the reflection of a wave incident from a liquid on to a solid, are discussed by L. M. Brekhovskikh, Waves in
Layered Media, 2nd edition, §7, Academic Press, New York 1980.
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The boundary conditions at the free surface of the medium are o,,n, = 0, whence
0. = 0,, =0,
giving two equations which express A4, and 4, in terms of A,. The result is
¢,%sin 20, sin 20, — ¢,* cos? 26,

A=A s
£ 767 sin 20;sin 26, + ¢, cos? 26,

2¢,¢, sin 20, cos 20,
® ¢,25in 26, sin 20, + ¢,2 cos? 26,

A= -

For 6, = 0 we have A, = — Ay, A4, = 0, i.e. the wave is reflected as a purely longitudinal wave. The ratio of the
energy flux density components normal to the surface in the reflected and incident longitudinal waves is
R, = | A,/ Ao |*. The corresponding ratio for the reflected transverse wave is

A
Ao

¢,cos b, 2

‘¢ cos8,

The sum of R, and R, is, of course, 1.

PROBLEM 2. The same as Problem 1, but for a transverse incident wave (with the oscillations in the plane of
incidence).t

SoLuTioN. The wave is reflected as a transverse and a longitudinal wave, with 6, = 8,, ¢, sin 8, = ¢,sin 6,. The

total displacement vector is
u=axngAge™ T+ n A +axn e,
The expressions for the amplitudes of the reflected waves are
A, ¢}sin20,sin 20, —c,? cos? 20,
A, - c,?sin 20,sin 20, + ¢, cos? 26,
A, 2c¢,c, sin 20, cos 26,

Ay ¢ sin26,sin 20, + ¢, cos? 20,

ProBLEM 3. Determine the characteristic frequencies of radial vibrations of an elastic sphere with radius R.

SoLUTION. We take spherical polar coordinates, with the origin at the centre of the sphere. For radial
vibrations, u is along the radius, and is a function of r and ¢ only. Hence curl u = 0. We define the displacement
“potential” ¢ by u, = u = d¢/dr. The equation of motion, expressed in terms of ¢, is just the wave equation
¢2A¢ = @, or, for oscillations periodic in time (o< e *'),

14 a

A¢E—_(r1ﬁ)= —k2, k = w/c,. )

or

The solution which is finite at the origin is ¢ = (A/r) sinkr (the time factor is omitted). The radial stress is
g, = p{ (clz - 2(.'2)““ + zclz“"}

plic? - 26106 +2¢,2¢")

or, using (1),

0,./p=—w'd -4 ¢r. (2)
The boundary condition ¢,,(R) = 0 leads to the equation
tankR 1
A3)

kR~ 1-(kRc,/2)"

whose roots determine the characteristic frequencies w = k¢, of the vibrations.

PROBLEM 4. Determine the frequency of radial vibrations of a spherical cavity in an infinite elastic medium
for which ¢, » ¢, (M. A. Isakovich 1949).

SOLUTION. In an infinite medium, radial oscillations of the cavity are accompanied by the emission of
longitudinal sound waves, leading to loss of energy and hence to damping of the oscillations. When ¢, » ¢, (i.c.

t If the oscillations are perpendicular to the plane of incidence, the wave is entirely reflected as a wave of the
same kind, and so R, = 1.
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K » p), this emission is weak, and we can speak of the characteristic frequencies of oscillations with a small
coefficient of damping.

We seek a solution of equation (1), Problem 3, in the form of an outgoing spherical wave ¢ = Ae™'/r k = w/c,
and, using (2), obtain from the boundary condition a,,(R) = 0 the result (kRc,/c,)* = 4(1 —ikR). Hence, when

o>,
2, .
w= - (I ~i( >
R 4

The real part of w gives the characteristic frequency of oscillation; the imaginary part gives the damping
coefficient. In an incompressible medium (¢, — o) there would of course be no damping. Thesc vibrations are
specifically due to the shear resistance of the medium (u # 0). It should be noticed that they have
kR = 2c,/c,; < 1,i.e. the corresponding wavelength is large compared with R;itis interesting to compare this with
the result for vibrations of an elastic sphere, where with ¢, » ¢, the first characteristic frequency is given by (3): kR
=7

§23. Elastic waves in crystals

The propagation of elastic waves in anisotropic media, i.e. in crystals, is more
complicated than for the case of isotropic media. To investigate such waves, we must
return to the general equations of motion pii; = do, /0x, and use for g, the general
expression (10.3) 6, = A;ymU;m- According to what was said at the beginning of §22, 4,
always denotes the adiabatic moduli of elasticity.

Substituting for o, in the equations of motion, we obtain

i . 8“{,.. 1- 3 5“1 + du,,
P = Adm —— = 2 im — | —
pU; iklm ox, 2/ ikim %,

6Xm ax,
- Fu . 0lu,
= 2Aikm 5 t 2 ikm s
d 0x,0
X 0X X, 0x,

Since the tensor 4;,,, 1s symmetrical with respect to the suffixes | and m we can interchange
these in the first term, which then becomes identical with the second term. Thus the
equations of motion are

A aZum

uizAi m
p kim 5

Let us consider a monochromatic elastic wave in a crystal. We can seek a solution of the
equations of motion in the form u; = ug;e'™ " =" where the u,, are constants, the relation
between the wave vector k and the frequency w being such that this function actually
satisfies equation (23.1). Differentiation of u; with respect to time results in multiplication
by —iw, and differentiation with respect to x, leads to multiplication by ik,. Hence the
above substitution converts equation (23.1) into pw?u; = Ayymkik . Putting u; = &, p,
we can write this as

(PW?dim — Aiamkik)u,, = 0. (23.2)

Thisis a set of three homogeneous equations of the first degree for the unknowns u,, u, u,.
Such equations have non-zero solutions only if the determinant of the coefficients is zero.
Thus we must have

| AisamKicky — szfsim | =0. (23.3)

This equation (the dispersion equation) determines the relation between the wave
frequency and the wave vector, called the dispersion relation. The equation (23.3)is cubic in
w?, and has three roots w* = w,?(k), which are in general different; the dispersion relation
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is said to have three branches. Substituting each root in turn back into (23.2) and solving,
we find the directions of the displacement vector u in these waves—the directions of
polarization of the waves; since the equations (23.2) are homogeneous, they of course do
not determine the magnitude of u, which remains arbitrary.t The directions of
polarization of the three waves with the same wave vector k are mutually perpendicular.
This important result follows directly from the fact that (23.3) may be regarded as an
equation for the principal values of the symmetrical tensor of rank twot Ay, k.k;; the
equations (23.2) determine the principal directions of this tensor, which are known to be
mutually perpendicular. None of these directions is, however, in general either purely
longitudinal or purely transverse with respect to the direction of k.

The velocity with which the wave is propagated (its group velocity) is given by the
derivative

U = dw/ok; (23.4)

see FM, §67. In an isotropic medium, the dependence of w on k reduces to a direct
proportionality to the magnitude k, and the group velocity is parallel to the wave vector. In
crystals, this is not so, and the direction of propagation of the wave is in general different
from that of k. Only certain exceptional directions (the symmetry axes of the crystal) can
be those of both k and U.

It is seen from the dispersion equation (23.3) that, in a crystal, w is a first-order
homogeneous function of the components of k. (If the ratio w/k is treated as the unknown,
the coefficients in the equation are independent of k.) Thus U is a zero-order homogeneous
function of k., k,, k.. In other words, the velocity of propagation of the wave depends on
its direction but not on the frequency.

If we construct in k-space (i.e. in the coordinates k,, k,, k,) a surface of constant
frequency, w(k) = constant, for any branch of the dispersion relation, then the vector
(23.4) is along the normal to the surface. Evidently, if this surface is everywhere convex,
there is a one-to-one relation between the directions of U and k: a definite direction of U
corresponds to each direction of k, and vice versa. If, however, the constant-frequency
surface is not everywhere convex, the relation is no longer one-to-one: there is again one
direction of U for each direction of k (in a given branch of the dispersion relation), but a
particular direction of U may occur for various directions of k.

PROBLEMS

PrOBLEM 1. Determine the dispersion relation of elastic waves in a cubic crystal which are propagated (a) in
the (001) crystal plane, that of a cube face, (b) in the [111] crystal direction, that of a cube diagonal.

SOLUTION. In a cubic crystal, the non-zero elastic moduliare A, ., = 4,, A,,,, = 43, 4,,., = 4, (and the equal
components with x and y replaced by other pairs from x, y, z; see §10); the x, y, and z axes are along the edges of
the cube.

t In an isotropic body the branches are w = ¢,k (longitudinally polarized waves) and two coincident roots
w = ¢,k corresponding to waves with two independent transverse directions of polarization.
1 From the symmetry of 4,
Amkiki = Aimkicky = Ampikiki .

The last expression differs from the first only in the naming of the dummy suffixes k and [, so that 4.k, k, is in
fact symmetrical in the suffixes i and m.
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(a) Wetake the (001) plane as the xy-plane. Let 8 be the angle between the wave vector k in this plane and the x-
axis. By constructing and solving the dispersion equation (23.3), we find three branches of the dispersion relation:
pwy 2 = tHA + 2[4, — A =44 + L) (4 — 4, — 21,)sin*f0cos?6]'/?},
pwy? = A3k2.

The third-branch wave is transverse and is polarized along the z-axis. The waves of the first two branches are
polarized in the xy-plane. It is evident from symmetry that the propagation velocity U = dw/0k of all these waves
is also in the xy-plane; the expressions obtained are therefore sufficient to calculate it.

When 6 = 0 (k is along the x-axis),

pw,? = A,k pwy? = Ayk2,

wave | being longitudinal (polarized along the x-axis) and wave 2 transverse (polarized along the y-axis).
When 0 = }n (k along the diagonal of the cube face),

pw,? =44, + 4, + 245)k2,
I’wz2 = i(ll _'lz)kz~

Wave 1 is longitudinal; wave 2 is transverse and is polarized in the xy-plane.
(b) Here the wave vector components are k, = k, = k_ = k/\/3. The solutions of the dispersion equation are

pw,t = 4k (A, + 24, +44,),
pwy, 3* = $kH (A, +4; +43).

Wave 1 is longitudinal; waves 2 and 3 are transverse.

PrOBLEM 2. Determine the dispersion relation for elastic waves in a crystal of the hexagonal system.

SoLUTION. A hexagonal crystal has five independent elastic moduli (§10, Problem 1), for which we use the
notation
A

‘xx;x = 'lyyu =c, Ann = )'nyx = d\ lun =ﬁ

= 4,,,, = a, Aiyxy = b, Aszyy =@—2b,

XXXX

The z-axis is along the sixth-order axis of symmetry; the directions of the x and y axes may be chosen arbitrarily.
We shall take the xz-plane so as to contain the wave vector k. Then k, = ksin8,k, = 0,k, = kcos 6, where @ is the
angle between k and the z-axis. By constructing and solving the equation (23.3), we find

pw,? = k?(bsin?0 + d cos?0),
pw;, 3* = 4k*{asin?0 + fcos?0 +d + [{(a — d)sin?0 +(d — f) cos? 8} + 4 (c + d)* sin*fcos?0]' /2!,
When 6 =0,
pw P =k, pwy? =K,
wave 3 is longitudinal, waves 1 and 2 transverse.

§24. Surface waves

A particular kind of elastic waves are those propagated near the surface of a body
without penetrating into it (Rayleigh waves). We write the equation of motion in the form
(22.11) and (22.12).

a—t:‘—czAu=0, (24.1)

where u is any component of the vectors u,, u,, and c is the corresponding velocity ¢, or c,,
and seek solutions corresponding to these surface waves. The surface of the elastic medium
is supposed plane and of infinite extent. We take this plane as the xy-plane; let the medium
bein z < 0.

Let us consider a plane monochromatic surface wave propagated along the x-axis.
Accordingly u = ¢'** ~ " f (z). Substituting this expression in (24.1), we obtain for the

function f(z) the equation
df , of
i = (k%)
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Ifk? — w?/c* < 0, this equation gives a periodic function f, i.e. we obtain an ordinary plane
wave which is not damped inside the body. We must therefore suppose that
k? — w?/c? > 0. Then the solutions for f are

2
f (z) = constant x exp(i \/[kz —(:—z:lz)

The solution with the minus sign would correspond to an unlimited increase in the
deformation for z - — oo. This solution is clearly impossible, and so the plus sign must be
taken.

Thus we have the following solution of the equations of motion:

u = constant x e'kx " @ gxz (24.2)
where
x =/ (k* - w?/c?). (24.3)

It corresponds to a wave which is exponentially damped towards the interior of the
medium, i.e. is propagated only near the surface. The quantity x determines the rapidity of
the damping.

The true displacement vector u in the wave is the sum of the vectors u; and u,, the
components of each of which satisfy the equation {24.1) with ¢ = ¢, for u,and ¢, for u,. For
volume waves in an infinite medium, the two parts are independently propagated waves.
For surface waves, however, this division into two independent parts is not possible, on
account of the boundary conditions. The displacement vector u must be a definite linear
combination of the vectors u, and u,. It should also be mentioned that these latter vectors
have no longer the simple significance of the displacement components parallel and
perpendicular to the direction of propagation.

To determine the linear combination of the vectors u, and u, which gives the true
displacement u, we must use the conditions at the boundary of the body. These give a
relation between the wave vector k and the frequency w, and therefore the velocity of
propagation of the wave. At the free surface we must have o;, n, = 0. Since the normal
vector n is parallel to the z-axis, it follows that o,, = 6,, = g,, = 0, whence

u,=0, u,, =0, o(u,,+u,)+(1—0)u,, =0. (24.4)

Since all quantities are independent of the coordinate y, the second of these conditions
gives
1/0u, OJu,
u, = 5(6_;+ 3y ) =40u,/0z =0.

Using (24.2), we therefore have

u, = 0. (24.5)

Thus the displacement vector u in a surface wave is in a plane through the direction of
propagation perpendicular to the surface.
The transverse part u, of the wave must satisfy the condition (22.8) div u, = 0, or
a“rx + a“t:
0x 0z

The dependence of u,, and u,, on x and z is determined by the factor e’k*+ % where x, is
given by the expression (24.3) with c =¢,, i.e.

K= \/(kz —w?/c?).

=0.
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Hence the above condition leads to the equation

iku,+xu,=0, or u,ju,= —x,/ik.
Thus we can write
U, = Klaelkx+x,z—lw(, u, = _l‘kaeikx+x,z—iwl, (246)

where a is some constant.
The longitudinal part u, satisfies the condition (22.9) curl u, = 0, or

Ju, Ou, _
oz ox

hence
wen iku, —Ku, =0 (Kl=\/[k2_w2/clz])~

Thus we must have
U, = kbeikx-&-x,z—iwt, u, = _iK'beikx+x,z—ia)l, (247)

where b is a constant.
We now use the first and third conditions (24.4). Expressing u;, in terms of the
derivatives of u;, and using the velocities ¢, c,, we can write these conditions as

aux+6u, -0
A a (24.8)
uz ux
¢ 32 +(C'2_2C'2)6x =0.

Here we must substitute u, = u,, + u,, 4, = u;; + u,,. The result is that the first condition
(24.8) gives

a(k? +x,2)+2bkx, = 0. (24.9)
The second condition leads to the equation
2ac ik k+b[c;? (5,2 —k?*)+2¢,2k?] = 0.
Dividing this equation by ¢, and substituting
K1—k?= —w?/c? = —(k*—K2)c,?/c?,
we can write it as
2akk+b(k* +k2)=0. (24.10)

The condition for the two homogeneous equations (24.9) and (24.10) to be compatible is
(k? + x,2)* = 4k?k,x, or, squaring and substituting the values of x,% and x,?,

2\4 2 2
(2k2-“’_2> = 16k‘(k2—5"—2)(k2—‘”—2). (24.11)
C, [+ ¢

From this equation we obtain the relation between w and k. It is convenient to put
w = c,k¢E; (24.12)

k® then cancels from both sides of the equation, and, expanding, we obtain for ¢ the
equation

2 2
56—8{‘+862(3—22'—2)—16<1—£‘—2—>=0. (24.13)
1

G
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Hence we see that ¢ depends only on the ratio ¢, /c,, which is a constant characteristic of
any given substance and in turn depends only on Poisson’s ratio:

a/e =/ {(1-20)/201 - a)}.

The quantity £ must, of course, be real and positive, and £ < 1 (so that k, and , are real).
Equation (24.13) has only one root satisfying these conditions, and so a single value of £ is
obtained for any given value of ¢,/c,.T

Thus, for both surface waves and volume waves, the frequency is proportional to the
wave number. The proportionality coefficient is the velocity of propagation of the wave,

This gives the velocity of propagation of surface waves in terms of the velocities ¢, and ¢, of
the transverse and longitudinal volume waves. The ratio of the amplitudes of the
transverse and longitudinal parts of the wave is given in terms of £ by the formula

- 2-¢7 24.15
b- T2/0-&) (2413

The ratio ¢,/ ¢, actually varies from 1/\/2 to O for various substances, corresponding to
the variation of ¢ from 0 to ; £ then varies from 0-874 to 0-955. Fig. 21 shows a graph of &
as a function of o.

1-00

ypd
/

085 1/4 1/2

-4

FiG. 21

PROBLEMS

PROBLEM 1. A plane-parallel slab with thickness h (medium 1) lies on an elastic half-space (medium 2).
Determine the frequency as a function of the wave number for transverse waves in the slab whose direction of
oscillation is parallel to its boundaries.

SOLUTION. We take the plane separating the slab from the half-space as the xy-plane, the half-space being
in z < 0 and the slab in 0 < z < h. In the slab we have

u =u, = 0, uyl =f(z)e‘“‘“"’",

x1
and in medium 2 a damped wave:
U =uy,y =0, w, = AetetTen o = /(K2 - w?/c,?).
For the function f (z) we have the equation
" +Kx,1f=0, K, = J(@e,t ~k?)

t In going from (24.11) to (24.13), the root w? = 0 (x, = k, = k) is lost; it corresponds to ¢ = 0, which also is
less than unity. However, it can be seen from (24.9) and (24.10) that this root gives a = —b and hence a total
displacement u = u, +u, = 0, so that there is no motion at all.
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(we shall see below that x,2 > 0), whence f (z) = B sin x; z + C cos «, z. At the free surface of the slab (z = h) we
must have g,, = 0,i.c. du,, /dz = 0. At the bour.dary between the two media (z = 0) the conditions are u,, = u,,,
Py 0uy, [0z = pyduy, /02, py and p; being the noduli of rigidity for the two media. From these conditions we find
three equations for A, B, C, and the compatibihity condition is tan x, h = p;x,/u, k, . This equation gives w as an
implicit function of k; it has solutions only for real x, and x,, and so ¢,; > w/k > ¢,;. Hence we see that such
waves can be propagated only if ¢,; > ¢,;.

PrROBLEM 2. Determine the depth of penetration and the velocity of surface waves propagated in thecrystal
direction [100] (cube edge) on the plane surface (001) (cube face) of a cubic crystal. The crystal is assumed to have
highly anisotropic elastic properties, in the sense that, if n = (4, — 4,)/245, either (a) n > 1 or (b) n < 1. The
elastic moduli are denoted as in §23, Problem 1.1

SOLUTION. We take the crystal surface as the xy-plane, with the medium in the half-space z < 0, and the wave
propagated in the x-direction. As in the text, it can be shown that u, = 0, i.c. the displacement vector uis in the xz-
plane. We seek it in the form

u, = ae“‘e“"""’", u, = ibe*? gitkx - wt) (l)

and use the ratios y = x/kand I' = b/a = —i(u,/u,), - o; y measures the depth of penetration of the surface
wave in units of the wavelength 1/k, and I" gives the axis ratio of the wave polarization ellipse at the surface. The
stress tensor components are

Oxx = j'l Uy + 11 Uzss

Oy = ll Uyy + j‘)“xxr
Oxs = 2"3 Uys.

The volume equations of motion (22.1) with u from (1) give the two algebraic equations

a(dy + A3 )y +b(Asy* =4, +pU?) =0, } 2
a(d Y = A3+ pU?)—b(d; + 43)y =0,
where U = w/k is the velocity of propagation.; Hence
r= (A4 +43)y ' 3)
Ay —A3y*—pU?
and the compatibility condition for the two equations (2) gives
Ayt =9[4 (A = pU?) + 23(A3 = pU) = (1, + 132 ] + (4, — pU*) (4, - pU?) = 0. (O]
This equation determines two values y, and y, for given values of w and k.
Accordingly, we now seek the displacement vector in the form
u, = (a,eY'*‘+aze71“’)e“““"", } )
u, = i(a, [ en* 4 q,,ersk)gitkx — w0,

Substituting these expressions in the boundary conditions a,, = g,, = 0 for z = 0, we find the two equations
ay(1+Tyy)+a(l+T,y,) =0, }
a4y — 4T +ay(dy, - 4,T;)=0.
The compatibility condition for these equations can be put, by means of (3), in the form
{22 +pUN) (43— pU) 2 + 22 37,727 4
+ A A (4122 +9172) (A3 = pUN) = 11 A3(A + p Uy 72} (74 —72) = 0. ™

When y, # y;, the factor y, —y, may be omitted. The sum y,* +y,? and the product y,?y,* are given by the
coefficients in the quadratic (in y?) equation (4), and (7) becomes

pU A A3(4, — pU T = (A3 = pU (2,2 = 4,2 = 4, pU?). ®

Let us now consider the two cases mentioned in stating the problem.

6

1 Whenn = 1, thecrystal behaves as an isotropic body regarding its elastic properties; see the third footnote to
§10.

b Becausc.of the symmetric position of the x-axis and the (first-order) homogeneity of w(k,,k,), the velocity
U = 0w/dk is also in ths x-direction, and its magnitude is w/k.
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(a) When > 1, A, may be regarded as a small quantity. We then find from (7)

Ut=1 [1 A ]
PEEAL TR vy )
This velocity U is much less than the velocity \/ (4,/p) (see §23, Problem 1(a)) of a longitudinal volume wave in

the same direction, and in that sense the surface wave is slow, like the transverse volume waves. From (4), we then
find the two values of y:

i 32 In(ds 4+ 40) 7172
N
and from (3)
Fyo=dayi/d ~n 722 <L, Fa=4,7:/4; ~n'?> L
Lastly, from (6),
ay/a; =Ty =472 /A ~n> L.

Thus,sincey, » 1and a, > a,,the depth of penetration of the surface wave is (on account of the first terms in (5))
much greater than the wavelength.t Its polarization ellipse in the xz-plane is elongated in the direction of the z-
axis normal to the surface (I'; < 1).

(b) When n < 1, 4, — 4, is small. Then, from (4),

_'1(11 +)~3)]
24, ’
The values of y from (4) are now complex: y, ; =y’ +iy”, where
Y =il +24;/4,), ¥ =1-in(1+4;/4,).

Inconsequence,I', , = ,, , = % i,a,/a, = i.Inthiscase too, therefore, the wave is slow and deeply penetrating
(¥ < 1). Since y is complex, the wave damping into the medium is here not monotonic but oscillatory; the
oscillation period (in the z-direction)is ~ 1/y" k, about the same as the wavelength and therefore much less than
the penetration depth.

pU% = (4, “‘-2)[1

§25. Vibration of rods and plates

Waves propagated in thin rods and plates are fundamentally different from those
propagated in a medium infinite in all directions. Here we are speaking of waves of length
large compared with the thickness of the rod or plate. If the wavelength is small compared
with this thickness, the rod or plate is effectively infinite in all directions as regards the
propagation of the wave, and we return to the results obtained for infinite media.

Waves in which the oscillations are parallel to the axis of the rod or the plane of the plate
must be distinguished from those in which they are perpendicular to it. We shall begin by
studying longitudinal waves in rods.

A longitudinal deformation of the rod (uniform over any cross-section), with no
external force on the sides of the rod, is a simple extension or compression. Thus
longitudinal waves in a rod are simple extensions or compressions propagated along its
length. In a simple extension, however, only the component o, of the stress tensor (the z-
axis being along the rod) is different from zero; it is related to the strain tensor by o,
= Eu,, = EQu,/dz (see §5). Substituting this in the general equation of motion pi,
= 00,,/0x,, we find

Ll Y} (25.1)

t The possibility of deeply penetrating slow surface waves in a crystal was first noted by S. V. Gerus and
V. V. Tarasenko (1975).
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This is the equation of longitudinal vibrations in rods. We see that it is an ordinary wave
equation. The velocity of propagation of longitudinal waves in rods is

V(E/p). (25.2)

Comparing this with the expression (22.4) for c,, we see that it is less than the velocity of
propagation of longitudinal waves in an infinite medium.

Let us now consider longitudinal waves in thin plates. The equations of motion for such
vibrations can be written down at once by substituting — phd?u,/dt* and — phd?u,/dt?
for P, and P, in the equilibrium equations (13.4):

p 0%u, 1 0%u, 1 0%u 1 ou

= X 4

Eo2 1-o2dx2 '2(140) 3y T 2(1=0)dxdy’

(25.3)
p 0%u, 1 d%u, 1 0%u, 1 0%u

X

E 02 1—g2 9)? +2(1 +0) 0x? +2(1 —0)dxdy’

We take the case of a plane wave propagated along the x-axis, i.e. a wave in which the
deformation depends only on the coordinate x, and not on y. Then equations (25.3) are
much simplified, becoming

0%u, E 0%u, o*u

E 0%*u

- =0, . > =0. 25.4
a2 p(l —g?) dx? a2 2p(1 +o0) dx? 254)
We thus again obtain wave equations. The coefficients are different for u, and u,. The
velocity of propagation of a wave with oscillations parallel to the direction of propagation
(uy) is

JIE/p(1=0%)]. (25.5)

The velocity for a wave (u,) with oscillations perpendicular to the direction of propagation
(but still in the plane of the plate)is equal to the velocity ¢, of transverse waves in an infinite
medium.

Thus we sec that longitudinal waves in rods and plates are of the same nature as in an
infinite medium, only the velocity being different; as before, it is independent of the
frequency. Entirely different results are obtained for bending waves in rods and plates, for
which the oscillations are in a direction perpendicular to the axis of the rod or the plane of
the plate, i.e. involve bending.

The equations for free oscillations of a plate can be written down at once from the
equilibrium equation (12.5). To do so, we must replace — P by the acceleration { multiplied
by the mass ph per unit area of the plate. This gives

¢ 2
pgt—z-i-(D/h)A (=0, (25.6)

where A is the two-dimensional Laplacian.

Let us consider a monochromatic elastic wave, and accordingly seek a solution of
equation (25.6) in the form

{ = constant x e'k'r—w) (25.7)
where the wave vector k has, of course, only two components, k, and k,. Substituting in
(25.6), we obtain the equation

—pw?+Dk*/h =0.
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Hence we have the following relation between the frequency and the wave number:
w=k2\/(D/ph)=k2\/{Eh2/12p(l—02)}. (25.8)

Thus the frequency is proportional to the square of the wave number, whereas in waves in
an infinite medium it is proportional to the wave number itself.

Knowing the relation between the frequency and the wave number, we can determine
the velocity of propagation of the wave from the formula

U =0w/dk.

The derivatives of k? with respect to the components k,, k, are respectively 2k,, 2k,. The
velocity of propagation of the wave is therefore

U= k./{Eh*/3p(1—a?)}. (25.9)

It is proportional to the wave vector, and not a constant as it is for waves in a medium
infinite in three dimensions.t
Similar results are obtained for bending waves in thin rods. The bending deflections of
the rod are supposed small. The equations of motion are obtained by replacing — K, and
— K, in the equations of equilibrium for a slightly bent rod (20.4) by the product of the
acceleration X or Yand the mass p S per unit length of the rod (S being its cross-sectional
area). Thus
pSX = EL,0*X /dz*, pSY=ElLd*Y/dz*. (25.10)

We again seek solutions of these equations in the form
X = constant x e”"‘ - wl)’ Y = constant x ei(kz - m!).

Substituting in (25.10), we obtain the following relations between the frequency and the
wave number:

w=k*/(EL/pS), =K/ (EL/pS), (25.11)

for vibrations in the x and y directions respectively. The corresponding velocities of
propagation are

U® =2k/(EL,/pS), U =2k/(EL/pS). (25.12)

Finally, there is a particular case of vibration of rods called torsional vibration. The
corresponding equations of motion are derived by equating Cd1/0z (see §18) to the time
derivative of the angular momentum of the rod per unit length. This angular momentum is
pld¢/dt, where d¢/dt is the angular velocity (¢ being the angle of rotation of the cross-
section considered) and I = [(x? + y?)d fis the moment of inertia of the cross-section
about its centre of mass; for pure torsional vibration each cross-section of the rod
performs rotary vibrations about its centre of mass, which remains at rest. Putting
= 0¢/0z, we obtain the equation of motion in the form

Co*¢p/0z2 = pld*¢p/at2. (25.13)
Hence we see that the velocity of propagation of torsional oscillations along the rod is
J(C/pl). (25.14)

t+ The wave number k = 2n/4, where 4 is the wavelength. Hence the velocity of propagation should increase
without limit as 4 tends to zero. This physically impossible result is obtained because formula (25.9) is not valid
for short waves.
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PROBLEMS

PrOBLEM 1. Determine the characteristic frequencies of longitudinal vibrations of a rod with length I, with
one end fixed and the other free.

SOLUTION. At the fixed end (z = 0) we must have u, = 0, and at the free end (z =) 0,, = Eu,, =0, ie.
Odu,/dz = 0. We seek a solution of equation (25.1) in the form

u, = A cos (wt+a) sinkz,

where k = w\/ (p/E). From the condition at z = [ we have cos k! = 0, whence the characteristic frequencies are
w =/ (E/p)2n+ 1)n/2l,

n being any integer.

PROBLEM 2. The same as Problem 1, but for a rod with both ends free or both fixed.
SOLUTION. In either case w = \/(E/p) nn/l.

PROBLEM 3. Determine the characteristic frequencies of vibration of a string with length /.

SoLuTiOoN. The equation of motion of the string is

922 T o

cf. the equilibrium equation (20.17). The boundary conditions are that X = 0 for z = 0 and I. The characteristic
frequencies are w = \/(pS/T)mr/l.

PROBLEM 4. Determine the characteristic transverse vibrations of a rod (with length I) with clamped ends.

SoLuTioN. Equation (25.10), on substituting X = X,(z) cos (wt + a), becomes
d*X,/dz* = k* X,,
where k* = w?pS/El,. The general integral of this equation is
Xo =Acoskz+ Bsinkz+C coshxz+ D sinhxz.

The constants A, B, C and D are determined from the boundary conditions that X = d X /dz = Oforz = Oand |.
The result is
Xo = A{(sinx!—sinhk!l)(cosxz—coshkz)—

— (cos kI —cosh kl) (sinkz —sinh xz)},

and the equation cos k! coshkl = 1, the roots of which give the characteristic frequencies. The smallest
characteristic frequency is

24 [EI

WDmin = 2~ ;9'

PROBLEM 5. The same as Problem 4, but for a rod with supported ends.

SoLUTION. In the same way as in Problem 4, we obtain X, = 4 sin xz, and the frequencies are given by sin !
=0,ie. x =nn/l (n=1,2,...). The smallest frequency is

987 |EI,
‘Umin=?- ;E

PROBLEM 6. The same as Problem 4, but for a rod with one end clamped and the other free.
SOLUTION. We have for the displacement
Xo = A{(cos xl +coshx!)(cos xz —cosh kz) +
+ (sin k! — sinh x{) (sin kz — sinh xz) }

(the clamped end being at z = 0 and the free end at z = [), and for the characteristic frequencies the equation
cosxl coshkl+1 = 0. The smallest frequency is

352 [El,
1? pS’

WDmin =
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PROBLEM 7. Determine the characteristic vibrations of a rectangular plate with sides a and b, with its edges
supported.
SoLuTiON. Equation (25.6), on substituting { = {,(x,y) cos(wt + a), becornes
Ao —K*{, =0,

where k* = 12p(1 — 0?)w?/Eh*. We take the coordinate axes along the sides of the plate. The boundary
conditions (12.11) become { = 3?{/dx? =0 for x = 0 and gq,

{=0C/ay* =0
for y = 0 and b. The solution which satisfies these conditions is
o= A sin(mnx/a) sin(nny/b),

where m and n are integers. The frequencies are given by

w=h [ —— | —+— |
12p(1-0%)" [a? "p?

ProOBLEM 8. Determine the characteristic frequencies for the vibration of a rectangular membrane with sides
a and b.

SoLuTION. The equation for the vibration of a membraneis T A { = ph{;cf. the equilibrium equation (14.9).
The edges of the membrane must be fixed, so that { = 0. The corresponding solution for a rectangular membrane is

{ = A sin(mnx/a) sin(nny/b) cos wt,

where the characteristic frequencies are given by
, Tn? (m’ . n?
t=—|=+=)
ph \a* b?

PROBLEM 9. Determine the velocity of propagation of torsional vibrations in a rod whose cross-section is a
circle, an ellipse, or an equilateral triangle, and in a rod in the form of a long thin rectangular plate.

m and n being integers.

SoLuTION. For a circular cross-section with radius R, the moment of inertia is I = 4 nR*; C is given in §16,
Problem 1, and we find the velocity to be J (u/p), which is the same as the velocity c,.

Similarly (using the results of §16, Problems 2 to 4), we find for a rod with an elliptical cross-section the velocity
[2ab/(a* + b?)]c,, for one with an equilateral triangular cross-section \/ (3/5)c,, and for one which is a long
rectangular plate (2h/d)c,. All these are less than c,.

PrROBLEM 10. The surface of an incompressible fluid of infinite depth is covered by a thin elastic plate.
Determine the relation between the wave number and the frequency for waves which are simultaneously
propagated in the plate and near the surface of the fluid.

SOLUTION. We take the plane of the plate as z = 0, and the x-axis in the direction of propagation of the wave;
let the fluid be in z < 0. The equation of motion of the plate alone would be
9? a*
2
ar? ax*
where p, is the volume density of the plate. When the fluid is present, the right-hand side of this equation must
also include the force exerted by the fluid on unit area of the plate, i.e. the pressure p of the fluid. The pressure in

poh

the wave, however, can be expressed in terms of the velocity potential by p = — pd¢/dt (we neglect gravity).
Hence we obtain
a4 lad4 [ 6¢]
h—=-D——| p— ) 1
Polt 5 axt [P0, 0 M
Next, the normal component of the fluid velocity at the surface must be equal to that of the plate, whence
aL/0t = [0¢/02), - o- @
The potential ¢ must satisfy everywhere in the fluid the equation
¢ 0d*¢
—+—-—=0. 3
dx? o )

We seek { in the form of a travelling wave { = {,e'** ~ {“'; accordingly, we take as ths solution of equation (3) the
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surface wave ¢ = P e'** ~"e** which is damped in the interior of the fluid. Substituting these expressions in (1)
and (2), we obtain two equations for ¢, and {,, and the compatibility condition is
1 Dk* _
p+hpok

§26. Anharmonic vibrations

The whole of the theory of elastic vibrations given above is approximate to the extent
that any theory of elasticity is so which is based on Hooke’s law. It should be recalled that
the theory begins from an expansion of the elastic energy as a power series with respect to
the strain tensor, which includes terms up to and including the second order. The
components of the stress tensor are then linear functions of those of the strain tensor, and
the equations of motion are linear.

The most characteristic property of elastic waves in this approximation is that any wave
can be obtained by simple superposition (i.e. as a linear combination) of separate
monochromatic waves. Each of these is propagated independently, and could exist by
itself without involving any other motion. We may say that the various monochromatic
waves which are simultaneously propagated in a single medium do not interact with one
another.

These properties, however, no longer hold in subsequent approximations. The effects
which appear in these approximations, though small, may be of importance as regards
certain phenomena. They are usually called anharmonic effects, since the corresponding
equations of motion are non-linear and do not admit simple periodic (harmonic)
solutions.

We shall consider here anharmonic effects of the third order, arising from terms in the
elastic energy which are cubic in the strains. It would be too cumbersome to write out the
corresponding equations of motion in their general form. However, the nature of the
resulting effects can be ascertained as follows. The cubic terms in the elastic energy give
quadratic terms in the stress tensor, and therefore in the equations of motion. Let us
suppose that all the linear terms in these equations are on the left-hand side, and all the
quadratic terms on the right-hand side. Solving these equations by the method of
successive approximations, we omit the quadratic terms in the first approximation. This
leaves the ordinary linear equations, whose solution u, can be put in the form of a
superposition of monochromatic travelling waves: constant x e!®-r=1 with definite
relations between w and k. On going to the second approximation, we must put u =
u, +u, and retain only the terms in uy on the right-hand sides of the equations (the
quadratic terms). Since u,, by definition, satisfies the homogeneous linear equations
obtained by putting the right-hand sides equal to zero, the terms in u, on the left-hand
sides will cancel. The result is a set of inhomogeneous linear equations for the components
of the vector u,, where the right-hand sides contain only known functions of the
coordinates and time. These functions, which are obtained by substituting u, for uin the
right-hand sides of the original equations, are sums of terms each of which is proportional
to

el[(k, —ky)or—(w, —w;)t]

or
eiliky +k;)r—(w, +mz)r]’
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where w,, w,, k;, k, are the frequencies and wave vectors of any two monochromatic
waves in the first approximation.

A particular integral of linear equations of this type is a sum of terms containing similar
exponential factors to those in the free terms (the right-hand sides) of the equations, with
suitably chosen coefficients. Each such term corresponds to a travelling wave with
frequency w, + w, and wave vector k, + k,. Frequencies equal to the sum or difference
of the frequencies of the original waves are called combination frequencies.

Thus the anharmonic eftects in the third order have the result that the set of fundamental
monochromatic waves (with frequencies w,, w,, . . . and wave vectors k,, k,, .. .) has
superposed on it other “waves” of small intensity, whose frequencies are the combination
frequencies such as w; + w,, and whose wave vectors are such as k, + k,. We call these
‘“vaves” in quotation marks because they are a correction effect and cannot exist alone
except in certain special cases (see below). The values w, + w, and k, + k, do not in
general satisfy the relations which hold between the frequencies and wave vectors for
ordinary monochromatic waves.

It is clear, however, that there may happen to be particular values of w,, k, and w,, k,
such that one of the relations for monochromatic waves in the medium considered also
holds for w, + w, and k, + k, (for definiteness, we shall discuss sums and not differences).
Putting w; = w, + w,, k3 = k; + k,, we can say that, mathematically, w, and k; then
correspond to waves which satisfy the homogeneous linear equations of motion (with zero
on the right-hand side) in the first approximation. If the right-hand sides in the second
approximation contain terms proportional to e'(k:»'T~ @1 then a particular integral will be
a wave with the same frequency and an amplitude which increases indefinitely with time.

Thus the superposition of two monochromatic waves with values of w,, k, and w,, k,
whose sum w,, k; satisfies the above condition leads, by the anharmonic effects, to
resonance: a new monochromatic wave (with parameters ws, k;) is formed, whose
amplitude increases with time and eventually is no longer small. It is evident that, if a wave
with w,, k; is formed on superposition of those with w,, k, and w,, k,, then the
superposition of waves with w,, k; and w,, k; will also give a resonance with w, =
w3 — w,, k, = k3 — k;, and similarly w,, k, and w,, k; lead to w,, k;.

In particular, for an isotropic body w and k are related by w = ¢,k or w = ¢k, with
¢, > ¢,. Itis easy to see in which cases either of these relations can hold for each of the three
combinations

o, K3 w3, kyy w3 =0, +w,;. ks =k, +k;.
If k, and k, are not in the same direction, k3 < k, + k,, and so it is clear that resonance can
then occur only in the following two cases: (1) the waves with w,, k, and w,, k, are
transverse and that with w;, k; longitudinal; (2) one of the waves with w,, k, and w,, k, is
transverse and the other longitudinal, and that with w3, k; is longitudinal. If the vectors k;
and k, are in the same direction, however, resonance is possible when all three waves are
longitudinal or all three are transverse.

The anharmonic effect involving resonance occurs not only when several monochro-
matic waves are superposed, but also when there is only one wave, with parameters w, k; .
In this case the right-hand sides of the equations of motion contain terms proportional to
e2itkir—oi0) If ¢», and k, satisfy the usual condition, however, then 2w, and 2k, do so too,
since this condition is homogeneous and of degree one. Thus the anharmonic effect results
in the appearance, besides the monochromatic waves with w,, k, previously obtained, of
waves with 2w,, 2k,, i.e. with twice the frequency and twice the wave vector, and
amplitude increasing with time.
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Finally, we may briefly discuss how we can set up the equations of motion, allowing for
the anharmonic terms. The strain tensor must now be given by the complete expression

(1.3)
1/0u; 0u, Ou dy
1 L] 26.1
Ui 2<ax,+ax..+ax,.ax," (26.1)

in which the terms quadratic in ; can not be neglected. Next, the general expression for the
energy densityt &, in bodies having a given symmetry, must be written as a scalar formed
from the components of the tensor u; and some constant tensors characteristic of the
substance involved; this scalar will contain terms up to a given power of u;,. Substituting
the expression (26.1) for u;, and omitting terms in u; of higher orders than that power, we
find the energy & as a function of the derivatives du;/dx, to the required accuracy.

In order to obtain the equations of motion, we notice the following result. The variation
0 & may be written

o0& du;
2 S o
or, putting
0é
Oix = a—(m, (26.2)
a(sul‘ _ a aaik
08 = aika = ax& (ai,,éui) 6u,- an .

The coefficients of — du; are the components of the force per unit volume of the body.
They formally appear the same as before, and so the equations of motion can again be
written

poll; = 00,/0x,, (26.3)

where p, is the density of the undeformed body, and the components of the tensor o;, are
now given by (26.2), with & correct to the required accuracy. The tensor g, is no longer
symmetrical.

It should be emphasized that o, is no longer the momentum flux density (the stress
tensor). In the ordinary theory this interpretation was derived by integrating the body
force density da;,/0dx, over the volume of the body. This derivation depended on the fact
that, in performing the integration, we made no distinction between the coordinates of
points in the body before and after the deformation. In subsequent approximations,
however, this distinction must be made, and the surface bounding the region of integration
is not the same as the actual surface of the region considered after the deformation.

It has been shown in §2 that the symmetry of the tensor a;, is due to the conservation of
angular momentum. This result no longer holds, since the angular momentum density is
not x;u, — x,4; but (x; + u;)u, — (x, + w)u;.

PROBLEM
Write down the general expression for the elastic energy of an isotropic body in the third approximation.

SoLuTioN. From the components of a symmetrical tensor of rank two we can form two quadratic scalars
(wx? and u,?) and three cubic scalars (u,®, uyu,? and u,u,u,,). Hence the most general scalar containing terms

t We here use the internal energy &, and not the free energy F, since adiabatic vibrations are involved.
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quadratic and cubic in u;,, with scalar coefficients (since the body is isotropic), is
€ = pu® + (K —dp)uy® + 3 Auguyuy + Buyuy +3Cuy;

the coefficients of u;, > and u,* have been expressed in terms of the moduli of compression and rigidity, and 4, B,C
are three new constants. Substituting the expression (26.1) for u;, and retaining terms up to and including the
third order, we find the elastic energy to be

£=1u (—.+ai) +3K- m(a“‘)

)
du; 6u,6u, Bu,(au‘)
A B K-
+u+ia)— NPT +(dB+4 “ax, )t
du; 6u.6u, du; du, du, (014,)
A— B———+4§Cl{— ).
1 3x,6x,6x a 0x, 0x; 0x; $ 0x,



CHAPTER 1V

DISLOCATIONSY

§27. Elastic deformations in the presence of a dislocation

EvasTic deformations in a crystal may arise not only by the action of external forces on it
but also because of internal structural defects present in the crystal. The principal type of
defect that influences the mechanical properties of crystals is called a dislocation. The study
of the properties of dislocations on the atomic or microscopic scale is not, of course, within
the scope of this book; we shall here consider only purely macroscopic aspects of the
phenomenon as it affects elasticity theory. For a better understanding of the physical
significance of the relations obtained, however, we shall first give two simple examples to
show what is the nature of dislocation defects as regards the structure of the crystal lattice.
Let us imagine that an “extra” half-plane is put into a crystal lattice of which a cross-
section is shown in Fig. 22; in this diagram, the added half-plane is the upper half of the yz-
plane. The edge of this half-plane (the z-axis, at right angles to the plane of the diagram) s
then called an edge dislocation. In the immediate neighbourhood of the dislocation the
crystal lattice is greatly distorted, but even at a distance of a few lattice periods the crystal
planes fit together in an almost regular manner. The deformation nevertheless exists even
far from the dislocation. It is clearly seen on going round a closed circuit of lattice points in
the xy-plane, with the origin within the circuit: if the displacement of each point from its
position in the ideal lattice is denoted by the vecior u, the total increment of this vector
around the circuit will not be zero, but equals one lattice period in the x-direction.

)
L ]
.
.
Fe--0-—@-—0———<
)
.
.
.

Fi1G. 22

Another type of dislocation may be visualized as the result of “‘cutting’ the lattice along
a half-plane and then shifting the parts of the lattice on either side of the cut in opposite
directions to a distance of one lattice period parallel to the edge of the cut (then called a

t This chapter was written jointly with A. M. Kosevich.
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screw dislocation). Such a dislocation converts the lattice planes into a helicoidal surface,
like a spiral staircase without the steps. In a complete circuit round the dislocation line (the
axis of the helicoidal surface) the lattice point displacement vector increment is one lattice
period along that axis. Figure 23 shows a diagram of such a cut.

FiG. 23

Macroscopically, a dislocation deformation of a crystal regarded as a continuou.
medium has the following general property; after a passage round any closed contour L
which encloses the dislocation line D, the elastic displacement vector u receives a certain
finite increment b which is equal to one of the lattice vectors in magnitude and direction;
the constant vector b is called the Burgers vector of the dislocation concerned. This

property may be expressed as
du:
<§du.-=<§idxk= —b, 27.1)
0x,

L

where the direction in which the contour is traversed and the chosen direction of the
tangent vector t to the dislocation line are assumed to be related by the corkscrew rule
(Fig. 24). The dislocation line itself is a line of singularities of the deformation field.

L

FIG. 24

The simple cases of edge and screw dislocations mentioned above correspond to
straight lines D with t L band 7 | b. We may also note that in the representation given by
Fig. 22 edge dislocations with opposite directions of b differ in that the “extra” crystal half-
plane lies above or below the xy-plane; such dislocations are said to have opposite signs.

In the general case, the dislocation is a curve, along which the angle between 7 and b
varies. The Burgers vector b itself is always constant along the dislocation line. It is also
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evident that this line cannot simply terminate within the crystal (see the next-but-one
footnote): it must either reach the surface of the crystal at both ends or (as usually happens
in actual cases) form a closed loop.

The condition (27.1) thus signifies that in the presence of a dislocation the displacement
vector is not a single-valued function of the coordinates, but receives a certain increment in
a passage round the dislocation line. Physically, of course, there is no ambiguity: the
increment b denotes an additional displacement of the lattice points equal to a lattice
vector, and this does not affect the lattice itself.

In the subsequent discussion it is convenient to use the notation

Wi = auk/ax,, (27.2)
so that the condijtion (27.1) becomes

§ widx; = —b,. (27.3)
L

The (unsymmetrical) tensor w;, is called the distortion tensor. Its symmetrical part gives the
ordinary strain tensor:

U = 3 (Wi + wiy). (27.4)

According to the foregoing discussion the tensors w;, and u;, and therefore the stress
tensor o, are single-valued functions of the coordinates, unlike the function u(r).

The condition (27.3) may also be written in a differential form. To do so, we transform
the integral round the contour L into one over a surface S, spanning this contour:}

§wmk dxm = jeilm aw"'" df; (275)
ox,
L s,

Since the tensor e, is antisymmetrical in the suffixes ! and m, and the tensor dw,,/0x,
= 0%u,/0x,0x,, is symmetrical in them, the integrand is identically zero everywhere except
where the line D meets the surface S, ; on the dislocation line itself, which is a line of
singularities, the representation of the w,, as the derivatives (27.2) is no longer
meaningful.{ At these points, the w;, are to be determined by means of the appropriate
delta function so that the integral (27.5) has the required value —b,. Let { be a two-
dimensional position vector from a given point on the dislocation axis, in a plane
perpendicular to t. The element of area in this plane is expressed in terms of the element df
of the surface S, as 7 -d f. From this definition of the two-dimensional delta function 4(¢),

jé(é)r-df= t jé({)dﬁ =1

S

t The transformation is made, according to Stokes’ theorem, by replacing dx,, by the operator df;eywd/0x,,
where e, is the antisymmetric unit tensor. It should be recalled also that any expression have the form e, a;b, is
the m component of the vector product axb.

1 If the dislocation line ended at some point within the body, the surface S, could be chosen so as to enclose

that point and thus nowhere intersect the line D. The integral (27.5) would then be zero, contrary to the condition
stated.
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It is therefore clear that to achieve the necessary result we must put
Citm Wi/ 0x) = —1;5,6(§). (27.6)

This is the required differential form.

The displacement field u(r) around the dislocation can be expressed in a general form if
we know the Green's tensor G,(r) of the equations of equilibrium of the anisotropic
medium considered, i.e. the function which determines the displacement component u;
produced in an infinite medium by a unit force applied at the origin along the x,-axis (see
§8). This can easily be done by using the following formal device.

Instead of seeking many-valued solutions of the equations of equilibrium, we shall
regard u(r) as a single-valued function, which undergoes a fixed discontinuity b on some
arbitrarily chosen surface S, spanning the dislocation loop D. If u, and u_ are the values
of the function on the upper and lower edges of the discontinuity S,, then

u,—u_=>hb (27.7)

The upper and lower edges are defined as shown in Fig. 24: the normal n to the surface S,
in the direction indicated relative to t is from the lower edge to the upper. The integration
along L from the upper to the lower edge then gives (27.3) with the correct sign. The
tensors w;, and u;,, which are formally defined by (27.3) and (27.4), have a delta-function
singularity on the discontinuity surface:

wi® = nb, 8(), ui® = ¥ (mby +nb;)d(0), (27.8)

where ( is the coordinate measured from the surface S, along the normal n; d{ = n-dl,
where dl is an element of length of L.

Since there is no actual physical singularity in the space around the dislocation, the
stress tensor g, must, as already mentioned, be a single-valued and everywhere continuous
function. The strain tensor (27.8), however, is formally related to a stress tensor ¢, =
Aiam Uim'>, which also has a singularity on the surface S,,. In order to eliminate this we must
define fictitious body forces distributed over the surface S, with a certain density f . The
equations of equilibrium in the presence of body forces are da,/dx, + f¥ = 0 (cf. (2.8)).
Hence it is clear that we must put

f(S) = - = —Aikim 7
A .
0x, 0x,

Thus the problem of finding the many-valued function u(r) is equivalent to that of finding
a single-valued but discontinuous function in the presence of body forces given by
formulae (27.7) and (27.9). We can now use the formula

ur) = ‘[G,-j(l’ - l")f,-‘s’(r’)d Ve

(27.9)

We substitute (27.9) and integrate by parts; the integration with the delta function is then

trivial, giving 5

ui(r) = — Ajimbm Jn,—— Gj(r—r)df". (27.10)
0x,

This solves the problem.t So

t The tensor G,; for an anisotropic medium has been derived in the paper by I. M. Lifshitz and L. N.
Rozentsveig quoted in §8, Problem. This tensor is in general very complicated. For a straight dislocation, which
corresponds to a two-dimensional problem of elasticity theory, it may be simpler to solve the equations of
cquilibrium directly.
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The deformation (27.9) has its simplest form far from the closed dislocation loop. If we
imagine the loop to be situated near the origin, then at distances r large compared with the
linear dimensions of the loop we have

u(r) = — Ajklmdlm aGij(r)/axkv (27.11)
where
dy =8Sb,S = j."idf: Jz‘e.'u jgxkdxl, (27.12)
Sp D

and e, is the antisymmetric unit tensor. The axial vector S has components equal to the
areas bounded by the projections of the loop D on planes perpendicular to the
corresponding coordinate axes; the tensor d;, may be called the dislocation moment tensor.
The components of the tensor G,; are first-order homogeneous functions of the
coordinates x, y, z (see §8, Problem). We therefore see from (27.11) that u; oc 1/r?, and the
corresponding stress field a;, oc 1/r3.

It is also easy to ascertain the way in which the elastic stresses vary with distance near a
straight dislocation. In cylindrical polar coordinates z, r, ¢ (with the z-axis along the
dislocation line) the deformation will depend only on r and ¢. The integral (27.3) must, in
particular, be unchanged by an arbitrary change in the size of any contour in the xy-plane
which leaves the shape of the contour the same. It is clear that this can be true only if all the
w, oc 1/r. The tensor uy, and therefore the stresses a;,, will be proportional to the same
power, 1/r.t

Although we have hitherto spoken only of dislocations, the formulae derived are
applicable also to deformations caused by other kinds of defect in the crystal structure.
Dislocations are linear defects; there exist also defects in which the regular structure is
interrupted through a region near a given surface.} Such a defect can be macroscopically
described as a surface of discontinuity on which the displacement vector u is discontinuous
but the stresses o, are continuous, by virtue of the equilibrium conditions. If the
discontinuity bis the same everywhere on the surface, the resulting strain is just the same as
that due to a dislocation along the edge of the surface. The only difference is that the vector
b is not equal to a lattice vector. However, the position of the surface S, discussed above is
no longer arbitrary; it must coincide with the actual physical discontinuity. Such a surface
of discontinuity involves a certain additional energy which may be described by means of
an appropriate surface-tension coefficient.

PROBLEMS

PrOBLEM 1. Derive the differential equations of equilibrium for a dislocation deformation in an isotropic
medium, expressed in terms of the displacement vector. §

+ Attentionisdrawn to a certain analogy between the elastic deformation field round a dislocation line and the
magnetic field of constant line currents. The current is replaced by the Burgers vector, which must be constant
along the dislocation line, like the current. Similar analogies will also be readily seen in the relations given below.
However, quite apart from the entirely different nature of the two physical effects, these analogies are not far-
reaching, because the tensor character of the corresponding quantities is different.

+ A well-known example of a defect of this type is a narrow twinned layer in a crystal.

§ The physical meaning of this and other problems relating to an isotropic medium is purely conventional.
since actual dislocations by their nature occur only in crystals, i.e. in anisotropic media. Such problems have
illustrative value, however.
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SoLuTION. In terms of the stress tensor or strain tensor the equations of equilibrium have the usual form
da,/0x, = 0 or, substituting a,, from (5.11),
Ou;y a Ouy
ox, 1-20 0x; -

To convert to the vector u we must use the differential condition (27.6). Multiplying (27.6) by e;,, and summing
over i and k, we obtaint

n

own 0
Mok T (exb),5(8). @

ox, 0x,

Writing (1) in the form

ow,, ow,, o 0w,
IR S o
0x, ox, 1-20 0x;

and substituting (2), we find

ow,, 1 owy .
DM exb5(6).
0x, 1-20 0x;
Now changing to u in accordance with (27.2), we find the required equation for the multi-valued function u(r):
1
Au+ 12 grad div u = txbd({). 3)
-2¢

The solution of this equation must satisfy the condition (27.1).

PROBLEM 2. Determine the deformation near a straight screw dislocation in an isotropic medium.

SoLuTiON. We take cylindrical polar coordinates z, r, ¢, with the z-axis along the dislocation line; the Burgers
vectoris b, = b, = 0, b, = b. It is evident from symmetry that the displacement u is parallel to the z-axis and is
independent of the coordinate z. The equation of equilibrium (3), Problem 1, reduces to Au, = 0. The solution
which satisfies the condition (27.1) isfu, = b¢/2n. The only non-zero components of the tensors u;, and o,, are
u,4 = b/dnr, g, = pb/2nr, and the deformation is therefore a pure shear.

The free energy of the dislocation (per unit length) is given by the integral

F=4 JZu,,a,,dV

ub? (dr

_41! r

)

which diverges logarithmically at both limits. As the lower limit we must take the order of magnitude of the
interatomic distances (~ b), at which the deformation is large and the macroscopic theory is inapplicable. The
upper limit is determined by a dimension of the order of the length L of the dislocation.
Then F = (ub?/4n) log (L/b). The energy of the deformation in the “core” of the dislocation near its axis (in a
region of cross-sectional area ~ b?) can be estimated as ~ ub?. When log (L/b)> 1 this energy is small in
comparison with that of the elastic deformation field.§

PROBLEM 3. Determine the internal stresses in an anisotropic medium near a screw dislocation which is
perpendicular to a plane of symmetry of the crystal.

SOLUTION. We take coordinates x, y, z so that the z-axis is along the dislocation line, and again write b, = b.
The vector u again has only the component u, = u(x, y). Since the xy-plane is a plane of symmetry, all the

t Using also the formula e;,,eixn = 10mn — O1nOms-

¢ In all the problems on straight dislocations we take the vector t in the negative z-direction.

§ These estimates are general ones and are valid in order of magnitude for any dislocatién (and not only for a
screw dislocation).

It should be noted that in practice the values of log (L/b) are usually not very large, and the energy of the core is
therefore a considerable fraction of the total energy of the dislocation.
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components of the tensor 4, are zero which contain the suffix z an odd number of times. Thus only two
components of the tensor g, are non-zero:

1 Ou A Ou
Oxs = Axsxs —— F Axzye T
0x ™ dy
Ou Ou

Oy = )'yux a + lyxy: 5

We define a two-dimensional vector ¢ and a two-dimensional tensor A,5: 0, = 0,,, A4y = Ageps (@ = 1,2). Then
0, = A,50u/0x,, and the equation of equxhbnum becomes div o = 0. The required solution of this equation must
satlsfy the condition (27.1): § grad u-dl =

In this form, the problem is the same as that of finding the magnetic induction and magnetic field (represented
by ¢ and grad u) is an anisotropic medium with magnetic permeability 4,, near a straight current of strength
I = cb/4n. Using the solution derived in clectrodynamics, we obtain (see ECM, §30, Problem $5)

b l-lehl Y
Zn\/lﬂ.l AofXe x,

Oy =

where |4| is the determinant of the tensor 4,,.

PROBLEM 4. Determine the deformation near a straight edge dislocation in an isotropic medium.

SOLUTION. Let the z-axis be along the dislocation line, and the Burgers vector be b, = b, b, = b, = 0. It is
evident from the symmetry of the problem that the displacement vector lies in the xy-plane and is independent of
2, so that the problem is a two-dimensional one. In the rest of this solution all vectors and vector operations are
two-dimensional in the xy-plane.

We shall seek a solution of the equation

Nu+

graddivu = —bji(r)

1-20
(see Problem 1; jis a unit vector along the y-axis) in the form u = u'® + w, where u‘” is a vector with components
u'®, = b¢/2n,u'®, = (b/2n) logr; these are the imaginary and real parts of (b/2n)log (x + iy), 7 and ¢ being polar
coordinates in the xy-plane. This vector satisfies the condition (27.1). The problem therefore reduces to finding
the single-valued function w. Since, as is easily verified, div u® = 0, Au'® = bjé(r), it follows that w satisfies the
equation

1
Aw+ I grad divw = — 2bjé(r).

This is the equation of equilibrium under forces concentrated along the z-axis with volume density
Ebjs(r)/2(1 + a); cf. §8, Problem, equation (1). By means of the Green's tensor found in that problem for an
infinite medium, the calculation of w is reduced to that of the integral

b (3—4o0)j ]
= 2 dz,
8x(1-0) J‘[ Rt
0
R=/(*+2?).
_b Y 1 xy
Y= 2 {tan +2(l—a)x +y?

_b{lZl\/(+)l x’}
= A—o) VTN

The result is

The stress tensor calculated from this has Cartesian components

y(3x% +y?)
Oxx = — (xl +y2)1 ’
yix*—y?)
x(x? —y?)
Gx, =

(xl + yl)l !
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and polar components
G, = 0,4 = — (bB/r)sin¢,
a,4 = (bB/r)cos ¢,
where B = p/2n(1 — o).

PrROBLEM 5. Aninfinity of identical parallel straight edge dislocations in an isotropic medium lie in one plane
perpendicular to their Burgers vectors and at equal distances h apart. Find the shear stresses due to such a
“dislocation wall” at distances large compared with h.

SOLUTION. Let the dislocations be in the yz-plane and parallel to the z-axis. According to the results of
Problem 4, the total stress due to all the dislocations at the point (x, y) is given by the sum
@ xl — (y —nh )2
a,,(x,y) =bB P S ——
R I ey

This may be written in the form

_ a dJ (a, B)
a“.-—th[J(a,ﬁ)+a o ]
where

Ja. )= Y a=x/h, B = y/h

A= -w a1+(ﬂ_n)2‘
According to Poisson’s summation formula

Y fim= Y% '[I(x)e""‘dX.

A= - h=-w

we find

®

+2re i onite J"'"Mdc

J(@p) = I 3

a? +¢? e a? + &2
- - ®
n 2rn 2
=—+— ) e *ecos2nkp.
@ X oa=y

When a = x/h > 1 only the first term need be retained in the sum over k, and the result is
bx
o,, = 4n’B x3 e 2%/ cos (2ny/h).
Thus the stresses decrease exponentially away from the wall.

PRrOBLEM 6. Determine the deformation of an isotropic medium around a dislocation loop (J. M. Burgers
1939).

SOLUTION. We start from (27.10). The tensor 4, for an isotropic medium may be written as

A'ikln = l‘{

2
T 5uBim+ 8ubim + Sindu }
1-20

The Green’s tensor for an isotropic medium has been derived in §8, Problem, and may be written as

1
Gu(R) = m {(3 —40) o, + v, }

Here R = r—r' is the radius vector from the element df’ at r’ to the point r at which the deformation is
considered; v = R/R is a unit vector in that direction. Substituting these expressions in (27.11) and carrying out
the differentiations in the integral, we obtain finally

1-20 [ 1 , . ) 3 L
u(r)=m J.F {b(v-df)+(b-v)df v(lvdf)}4~8—n(l gy J‘R’ v(bev)(v-df’). 1)
Sp So
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The integrals here can be expressed in terms of integrals along D, i.e. along the dislocation loop. To do so, we

use the formulae
1 1
§bedl JF{(b-v)df —v(b-df)},

D Sp
§(bxv)~dl'
D

1

- JE {b-df' +(b-y) (v-df’)}.
SD

The integrals on the right are derived from the contour integrals on the left by means of Stokes’ theorem,

according to which the transformation is made by the change dI' - d fxV’ (where V' = 0/0r’); since the integrand

depends only on r —r', this transformation is equivalent to dI' — df ' xV (where V = d/dr). We also define the

solid angle Q subtended by the loop D at the point considered:

1
Q= jA— v-df’.
RZ

The displacement field is then

Q 1 [1 1
—b+— - bxdl + ——— V(bxy)-dl.
uir) b4n+4n§R 87(1-o) §‘ K
D D

The non-uniqueness of this function lies in the first term: the angle Q changes by 4n on passing round D.
Far from the loop, the expression (1) becomes

1-2¢ 3
= —{S(b-v)+b(S-v)-v(S-b . .
8n(l—a)R’{ (b-v)+b(S-v)-v(S )}+8n(1—a)R1 (S:-v)(b-v)v

This could also be obtained directly from (27.11) and (27.12).

u(r)

§28. The action of a stress field on a dislocation

Let us consider a dislocation loop D in a field of elastic stresses ¢, created by given
external loads, and calculate the force on the loop in such a field. According to the general
rules, this must be done by finding the work 6R, done on the dislocation when it
undergoes an infinitesimal displacement.

Let us return to the concept of the dislocation loop D (§27) as the line spanned by the
displacement vector discontinuity surface S,; the amount of the discontinuity is given by
(27.7). The displacement of D changes the surface S,. Let dx be the displacement vector of
points on D. Under this displacement, the line element dl sweeps out an area 6 f = 6x xJl
= 6xxtd/, and this gives the increase in the area of the surface S,. Since we are here
considering an actual physical displacement of the dislocation, we have to take into
account the fact that the operation mentioned is accompanied by a change in the physical
volume of the medium. Since the displacements u of the points in the medium on either
side of the surface differ by b, the change is given by the product

oV =b-df = (6xx1)-bdf = 6x - (rxb)df. (28.1)

Two physically different situations are therefore possible. In one, 6V =0, and the
displacement of the dislocation line involves no change in volume. This will happen if the
displacement occurs in the plane defined by the vectors T and b, called the glide plane or slip
plane of the dislocation element concerned. The envelope of the family of glide planes of all
the elements of length in the loop D is called the glide surface of the dislocation; it is a
cylinder with its generators parallel to the Burgers vector b.t The physically distinctive

t The possible systems of glide planes in an anisotropic medium are actually governed by its crystal lattice
structure.
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feature of the glide plane is that it is the only one in which a comparatively easy mechanical
movement of the dislocation is possible (usually referred to in this case as a glide).t

As the area of the surface S, changes during the movement of the dislocation, so does
the deformation singularity (27.8) concentrated on the line D. This change may be
expressed as

Ouy® = 4 {b,(6xX1), + b, (6xX1),} 6(¢), (28.2)

where §(£) is the two-dimensional delta function defined in §27. We must emphasize that
this value is uniquely determined by the shape of D and the displacement Jx, in contrast to
(27.8), which depends on the arbitrary choice of the surface S,,.

The expression (28.2) describes a local inelastic residual or plastic strain not associated
with elastic stresses. The corresponding work done ultimately by external sources is given
by the integral

foik“” ou, dV

(cf. (3.2)), where du,, is the total geometrical change in the deformation. This consists of
elastic and plastic parts; we are concerned here only with the work related to the plastic
part.} After substituting du;,® from (28.2), there remains (because of the delta function)
only an integration along the dislocation loop D:

R, = §a,~,“‘” Cim 0%, T, dl. (28.3)
D

The coefficient of dx, in the integrand is the force £, acting on unit length of the dislocation
line. Thus

fi = w101, b,, (28.4)

(M. O. Peach and J. S. Koehler 1950). This force f is perpendicular to 1, i.e. to the
dislocation line.

Formula (28.3) has an intuitive interpretation. From the above discussion, the
displacement of the dislocation line element amounts to the cutting of an area df and a
shift of the upper edge through b relative to the lower edge. The internal stress force
applied to df is 0,'df,, and the work done by this force in the shift is b,g;,'“ df,.

Since (28.4) in that form relates only to movement in the glide plane, the component of
the force f in that plane may be introduced immediately. Let k be a unit vector along the
normal to the dislocation line in the glide plane. Then

fi = f-x = eyyx1b 0.,
or

L =v0,"b,, (28.5)

where v = kX1 is a vector normal to the glide plane. Since b and v are at right angles, we

+ For example. for the movement of the edge dislocation shown in Fig. 22 in its glide plane (the xz-plane),
comparatively slight atomic displacements are sufficient, which make crystal half-planes farther and farther from
the yz-plane into “extra™ half-planes.

1 In deriving the equations of motion, virtual plastic and elastic strains are to be regarded as independent
variables. Since the equation of motion of the dislocation is under consideration, only the plastic strain need be
taken into account.
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can take two of the coordinate axes along these vectors and find that f, is determined by
only one component of the tensor 0,,.

If, however, the displacement of the dislocation is not in the glide plane, 6V # 0. This
means that the shift of the edges of the cut would give rise to an excess of material (when
one edge encroaches on the other) or a deficiency of material (when a gap is formed
between the edges as they move apart). This is not acceptable if we suppose that the
medium remains continuous with constant density (apart from the elastic strains) as the
dislocation moves. In an actual crystal, the excess material is removed, or the deficiency
made good, by diffusion, the dislocation axis becoming a source or sink for diffusional
fluxes of matter.t Movement of dislocations accompanied by the healing of defects in the
continuous medium by diffusion is called climb.}

It is clear from the above that, allowing dislocation climb as a possible virtual
displacement, one must suppose that climb, like glide, occurs without any local change in
the volume of the medium. This means that from the strain (28.2) we have to subtract the
part 4 8,1, ® which accounts for the change in volume, representing the plastic strain by
the tensor

Suy® = {4b,(6xx1), +4b, (6xx7); —45,b- (dxX7)} 5(£). (28.6)

Accordingly (28.4) is replaced by the following expression for the force acting on the
dislocation: §

f = ewub, (O1m'? —$0,m0,0"") (28.7)

(J. Weertman 1965).
The total force on the entire dislocation loop is

Fi = eiklbm §(Ulm(‘) —‘%6["‘0,“(8)) dxk‘ (288)
D

This is zero except in an inhomogeneous stress field: when ¢,,,® = constant, the integral
reduces to §dx, = 0. If the stress field varies only slightly along the loop, we can write

Fi =€in bm d (aml(e) - %5‘,"0’"(2)) §xpdxk;
ox,
D

the loop is assumed to be near the origin. The integrals here form an antisymmetric tensor:

§x’, dx,‘ = —§Xkdxp.

We can then easily express the force in terms of the dislocation moment d,, in (27.12)%:

00, oa,,'° da,,'®
F, =d,, alx +4 (di,T —d, = ) (28.9)
i I i

t For example, the dislocation shown in Fig. 22 can move in the yz-plane only through a loss of material from
the “extra” half-plane by diffusion.

3 Since such a process is limited by diffusion, it can be important in practice only at sufficiently high
temperatures.

§ Evidently, a uniform compression of the crystal cannot produce a force f, and the expression (28.7) has this
property.

9 The derivation uses also the formula e;,,€;un = Jim0in — Sxim. and the equilibrium equation da,,*'/dx,, = 0.
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In a homogeneous stress field this force is zero, as already mentioned. In that case,
however, the loop is acted on by a torque

Ki = ei1m§xlfm dl,

which can also be expressed in terms of the dislocation moment:

K; = eiidim (01 — $6,0,,"7). (28.10)

PROBLEMS

ProBLEM 1. Find the force of interaction between two parallel screw dislocations in an isotropic medium.

SoLuTiON. The force per unit length acting on one dislocation in the stress field due to the other dislocation is
determined from formula (28.5), using the results of §27, Problem 2. It is a radial force of magnitude
f = ub,b,/2nr. Dislocations of like sign (b,b, > 0) repel, while those of unlike sign (b,b, < 0) attract.

PROBLEM 2. A straight screw dislocation lies parallel to the plane free surface of an isotropic medium. Find
the force acting on the dislocation.

SOLUTION. Let the yz-plane be the surface of the body, and let the dislocation be parallel to the z-axis with
coordinates x = xo, y = 0.

The stress field which leaves the surface of the medium a free surface is described by the sum of the fields of the
dislocation and its image in the yz-plane, considered to lie in an infinite medium:

. =u_b[ y B y ]
=l (x—x2 4y (x+x)r+y )
pb[ X —Xo X+ Xo ]

6, = —— -
” 2n | (x =% +y*  (x+x0) +)?

Such a field exerts a force on the dislocation considered which is equal to the attraction exerted by its image, i.c.
the dislocation is attracted to the surface of the medium by a force f = ub?/4nx,.

ProBLEM 3. Find the force of interaction between two parallel edge dislocations in an isotropic medium
which are in parallel glide planes.

SOLUTION. Let the glide planes be parallel to the xz-plane and let the z-axis be parallel to the dislocation lines;
asin §27, Problem 4, we put 1, = — 1, b, = b. Then the force on unit length of the dislocation in the field of the
elastic stresses o;, has components f, = ba,,, f, = —ba,,. In the case considered, g;, is determined by the
expressions derived in §27, Problem 4. If one dislocation is along the z-axis, it exerts on the other dislocation
(passing through the point (x, y, 0)) a force whose polar components are f, = b,b,D/r, f, = (b,b,D/r) sin 2¢,
D = p/2n(1 — o). The component of this force in the glide plane is f, = (b,b,D/r)cos ¢ cos 2¢, which is zero
when ¢ = 4n or {n. The former position corresponds to stable equilibrium when b,b, > 0, the latter when
b,b, <O.

§29. A continuous distribution of dislocations

If a crystal contains several dislocations at the same time which are at relatively short
distances apart (although far apart compared with the lattice constant, of course), it is
useful to treat them by means of an averaging process: we consider “physically
infinitesimal” volume elements in the crystal with a large number of dislocation lines
through each.

An equation which expresses a fundamental property of dislocation deformations can
be formulated by a natural generalization of equation (27.6). We define a tensor p;, (the
dislocation density tensor) such that its integral over a surface spanning any contour L is
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equal to the sum b of the Burgers vectors of all the dislocation lines embraced by the
contour:

ink df; = b,. (29.1)
SL

The continuous functions p;, describe the distribution of dislocations in the crystal. This
tensor now replaces the expression on the right of equation (27.6):

CiimOWmi/0X) = — Py (29.2)
This equation shows that the tensor p;, must satisfy the condition
0pi/0x; = 0; (29.3)

for a single dislocation, this condition simply states that the Burgers vector is constant
along the dislocation line.

When the dislocations are treated in this way, the tensor w;, becomes a primary quantity
describing the deformation and determining the strain tensor through (27.4). A
displacement vector u related to w;, by the definition (27.2) cannot exist; this is clear from
the fact that with such a definition the left-hand side of equation (29.2) would be identically
zero throughout the crystal.

So far we have assumed the dislocations to be at rest. Let us now see how a set of
equations may be formulated so as to allow in principle elastic deformations and stresses
in a medium where dislocations are moving in a given mannert (E. Kroner and G. Rieder
1956).

Equation (29.2) is independent of whether the dislocations are at rest or in motion. The
tensor w;, still determines the elastic deformation; its symmetrical part is the elastic strain
tensor, which is related to the stress tensor in the usual way, by Hooke’s law.

This equation, however, is now insufficient for a complete formulation of the problem.
The full set of equations must also determine the velocity v of the points in the medium.

It must be borne in mind that the movement of dislocations causes not only a change in
the elastic deformation but also a change in the shape of the crystal which does not involve
stresses, i.e. a plastic deformation. The motion of dislocations is, as already mentioned, a
mechanism of plastic deformation. This is clearly illustrated by Fig. 25, where the passage
of the edge dislocation from left to right causes the part of the crystal above the glide plane
to be shifted to the right by one lattice period; since the lattice is then regular, the crystal
remains unstressed. Unlike an elastic deformation, which is uniquely defined by the
thermodynamic state of the body, a plastic deformation depends on the process which
occurs. In considering dislocations at rest we have no need to distinguish elastic and plastic
deformations, since we are concerned only with stresses which are independent of the
previous history of the crystal.

Let u be the geometrical displacement vector of points in the medium, measured, say,
from their position before the deformation process begins; its time derivative a = v. If the
“total distortion” tensor W;, = 0u,/dx, is formed from the vector u, its “plastic part” LY

t We shall not discuss here the problem of determining this motion itself from the forces applied to the body.
The solution of such a problem requires a detailed study of the microscopic mechanism of the motion of
dislocations and their retardation by various defects, which must take account of the conditions occurring in
actual crystals.
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S S

FiG. 25

is obtained by subtracting from W, the “elastic distortion” tensor, which is the same as the
tensor w; in (29.2). We use the notation

—ju = owyPV/0r; (29.4)

the symmetrical part of j, gives the rate of variation of the plastic strain tensor: the
change in u; ™ in an infinitesimal time interval &t is

5“ik(pl) = — 4 (ju +i)ot. (29.5)

We may note, in particular, that, if a plastic deformation occurs without destroying the
continuity of the body, the trace of the tensor j; is zero: a plastic deformation causes no
extension or compression of the body (which would always involve the appearance of
internal stresses), i.e. u,® = 0, and therefore ji, = — du,,P/ot = 0.
Substituting in the definition (29.4) wa P = W, —w,, we can write it as
awik 50,‘
Y (29.6)
ot ox; Jin
an equation which relates the rates of change of the elastic and plastic deformations. Here
the j, must be regarded as given quantities which must satisfy conditions ensuring the

TOE-E
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compatibility of equations (29.6) and (29.2). These conditions are found by differentiating
(29.2) with respect to time and substituting (29.6), and are
0Pk Ojmi _

+em-— =
a " oax,

The complete set of equations is given by (29.2) and (29.6), together with the dynamical
equations

0. (29.7)

pUi = 004/0Xy, G = Aiumblim = AiximWim (29.8)

(A. M. Kosevich 1962). The tensors p; and j;, which appear in these equations are given
functions of the coordinates (and time) which describe the distribution and movement of
the dislocations. These functions must satisfy the compatibility conditions of equations
(29.2) with one another and with (29.6), which are given by (29.3) and (29.7).

The ‘condition (29.7) may be regarded as a differential expression of the “law of
conservation of the Burgers vector” in the medium: integrating both sides of this equation
over a surface spanning some closed line L, defining by (29.1) the total Burgers vector b of
the dislocations embraced by L, and using Stokes’ theorem, we obtain

db, .
—d}- - _§jikdxi‘ (29'9)

L
The form of this equation shows that the integral on the right gives the “flux” of the
Burgers vector through the contour L per unit time, i.e. the Burgers vector carried across L
by moving dislocations. We may therefore call j;, the dislocation flux density tensor.
In particular, it is clear that for an isolated dislocation loop the tensor j;, has the form

Jik = CimPcVm
= CiimT V mbid($), (29.10)

in accordance with the expression (28.2) for the plastic strain when the dislocation moves;
V is the velocity of the dislocation line at a particular point on it. The flux vector through
the element dl of the contour L is j,d!l; and is proportional to dl- txV = V-dlxt, i.e. the
component of V in a direction perpendicular to both dl and t; from geometrical
considerations it is evident that this is correct, since only that velocity component causes
the dislocation to intersect the element dl.

We may note that the trace of the tensor (29.10) is proportional to the component of the
velocity of the dislocation along the normal to its glide plane. It has been mentioned above
that the absence of any inelastic change in density of the medium is ensured by the
condition j; = 0. We see that for an individual dislocation this condition signifies motion
in the glide plane, in accordance with the previous discussion of the physical nature of the
movement of dislocations; see the second footnote to §28.

Finally, let us consider the case where dislocation loops are distributed in the crystal in
such a way that their total Burgers vector (denoted by B) is zero.t This condition signifies
that integration over any cross-section of the body gives

inkdﬁ =0. (29.11)

t The presence of a dislocation involves a certain bending of the crystal, as shown schematically in Fig. 26
(greatly exaggerated). The condition B = 0 means that there is no macroscopic bending of the crystal as a whole.
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FiG. 26

From this it follows that the dislocation density in this case can be written as
Pix = €imOP m/0X; (29.12)

(F.Kroupa 1962); then the integral (29.11) becomes an integral along a contour outside the
body, and is zero. It may also be noted that the expression (29.12) necessarily satisfies the
condition (29.3).

It is easy to see that the tensor P;, thus defined represents the dislocation moment
density in the deformed crystal, and may therefore be called the “dislocation polarization™:
the total dislocation moment D, of the crystal is, by definition,

Dy =3Sb =4%eind by §x,dx

D
=4 jeilm XpmdV,

where the summation is over all dislocation loops and the integration is over the whole
volume of the crystal. Substituting (29.12), we obtain

0P,
D, = : —L£dv
ik %J‘eumempqxl axp

- %Jx,,,( ox;  0x, )dV

and, after integrating by parts in each term,

lk = jpxkdv (29.13)

The dislocation flux density is given in terms of the same tensor P, by
Jiu = — 0Py /ot (29.19)

This is easily seen, for example, by calculating the integral | j, dV over an arbitrary part of
the volume of the body, using the expression (29.10), to give a sum over all dislocation
loops within that volume. We may note that the expression (29.14) together with (29.12)
automatically satisfies the condition (29.7).

A comparison of (29.14) and (29.4) shows that éw,,P) = 6P,,. If we agree to regard the
plastic deformation as absent in the state with P, = 0, then w;® = P,,t and

wy = Wy — wik(pl) = Ou,/0x; — Py, (29.15)
t It is assumed that the entire deformation process occurs with B = 0. This point must be emphasized, since

there is a fundamental difference between the tensors P, and w,, P whereas P,, is a function of the state of the
body, the tensor w,,® is not, but depends on the process which has brought the body into that state.
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where u, is again the vector of the total geometrical displacement from the position in the
undeformed state. Equation (29.6) is then satisfied identicaly, and the dynamical equation
(29.8) becomes

Pl — Aipim02 U/ 0X,0%) = — AijymOPim/ 0% (29.16)

Thus the determination of the elastic deformation due to moving dislocations with B = 0
reduces to a problem of ordinary elasticity theory with body forces distributed in the
crystal with density — A, 0P,,/0x,.

§30. Distribution of interacting dislocations

Let us consider a large number of similar straight dislocations lying parallel in the same
glide plane, and derive an equation to determine their equilibrium distribution. Let the
z-axis be parallel to the dislocations, and the xz-plane be the glide plane.

We shall suppose for definiteness that the Burgers vectors of the dislocations are in the
x-direction. Then the force in the glide plane on unit length of a dislocation is ba, ,, where
a,, is the stress at the position of the dislocation.

The stresses created by one straight dislocation (and acting on another dislocation)
decrease inversely as the distance from it. The stress at a point x due to a dislocation at a
point x' is therefore bD/(x — x'), where D is a constant of the order of the elastic moduli of
the crystal. It may be shown that this constant D is positive, i.e. two like dislocations in the
same glide plane repel each other.t

Let p(x) be the line density of dislocations on a segment (a;, a,) of the x-axis; p(x)dx is
the sum of the Burgers vectors of dislocations passing through points in the interval dx.
Then the total stress at a point x on the x-axis due to all the dislocations is given by the
integral

a;

0,,(x)=—D J M (30.1)
E—x

For points in the segment (a,, a,) this integral must be taken as a principal value in order

to exclude the physically meaningless action of a dislocation on itself.

If the crystal is also subjected to a two-dimensional stress field ,,(x, y) in the xy-
plane, caused by given external loads, each dislocation will be subjected to a force
b(o., + p(x)), where for brevity p(x) denotes ag,,(x, 0). The condition of equilibrium is
that this force be zero: g,,+p =0, i.e.

a,

p J p(EE  p(x)

i-x - D = w(x), (30.2)

a,

where P denotes, as usual, the principal value. This is an integral equation to determine the
equilibrium distribution p(x). It is a singular equation with a Cauchy kernel.

The solution of such an equation is equivalent to a problem in the theory of functions of
a complex variable which may be formulated as follows.

t For an isotropic medium this has been proved in §28, Problem 3.
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Let Q(z) denote a function defined throughout the complex z-plane (cut from a, to a,)as
the integral

 p(e)de
-z

a,

Q2) = (30.3)

Let Q*(x) and Q7 (x) denote the limiting values Q(z) on the upper and lower edges of the
cut. They are equal to similar integrals along the segment (a,, a,) with an indentation in
the form of an infinitesimal semicircle below or above the point z = x respectively, i.e.

a;

Otx) < P I p(O)d
Z

a,

+ inp(x). (30.4)

- X

If p(&) satisfies equation (30.2), the principal value of the integral is w(x), and we therefore
have
Q" (x)+ Q7 (x) = 2w(x), (30.5)

Q* (x) — Q7 (x) = 2inp(x). (30.6)

Thus the problem of solving equation (30.2) is equivalent to that of finding an analytic
function €(z) with the property (30.5); p(x) is then given by (30.6). The physical conditions
of the problem in question also require that Q(co) = 0; this follows because far from the
dislocations (x — + oo) the stresses o,, must be zero (by the definition (30.3), o,.,(x) =
— DQ(x) outside the segment (a,, a,)).

Let us first consider the case where there are no external stresses (p(x) = 0), and the
dislocations are constrained by some obstacles (lattice defects) at the ends of the segment
(ay, a;). When w(x) = 0 we have from (30.5) Q* (x) = — Q7 (x), i.e. the function Q(z) must
change sign in a passage round each of the points a,, a,. This condition is satisfied by any
function of the form

P(z)
V@ -2)(z-a)]’

where P(z) is a polynomial. The condition Q(c0) = 0 means that we must take P(z) = |
(apart from a constant coefficient), so that

Q(z) = (30.7)

1
Jla,—2)(z—ay)]’

The required function p(x) will, according to (30.6), have the same form. The coefficient is
determined from the condition

Q(z) = (30.8)

jp(é)dé =B, (30.9)
a,
where B is the sum of the Burgers vectors of all the dislocations, and so we have
B
7‘\/[(02 -x)(x—ay)]’

We see that the dislocations pile up towards the obstacles at the ends of the segment, with
density inversely proportional to the square root of the distance from the obstacle. The

plx) = (30.10)
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stress outside the segment (a,, a,) increases in the same manner as the ends of the segment
are approached, e.g. for x > a,
BD
g, = .
7 Jlx—ay)(a; - a))]
In other words, the concentration of dislocations at the boundary leads to a stress
concentration beyond the boundary.

Let us now suppose that under the same conditions (obstacles at the fixed ends of the
segment) there is also an external stress field p(x). Let Qq(z) denote a function of the form
(30.7), and let us rewrite equation (30.5) divided by Q,* = —Q,~

Q' (x) Q (x) _ 2w(x)
Q'(x) Qo (x) Q'(x)
A comparison of this with (30.6) shows that

a,

Qe 1 J w§) A

= nP(z 30.11
Qox) " in) @z TP 0.1

where P(z) is a polynomial. A solution which satisfies the condition Q(oo0) = 0 is obtained
by taking as Q,4(z) the function (30.8) and putting P(z) = C, a constant. The required
function p(x) is hence found by means of (30.6), and the result is

_ 1 d¢
p(x) = 2\7[(‘12 " (x=ap] f w(f)\/[(az =8 —ay)] ‘é‘_—; +

a,

C
T @ -0 -an]’

The constant C is determined by the condition (30.9). Here also p(x) increases as
(@, —x)"'/? when x — a, (and similarly when x — a,), and a similar concentration of
stresses occurs on the other side of the boundary.

If there is an obstacle only on one side (at a,, say) the required solution must satisfy the
condition of finite stress for all x < a,, including the point x = a,; the position of the latter
point is not known beforehand and must be determined by solving the problem. With
respect to €)(z) this means that Q(a,) must be finite. Such a function (satisfying also the
condition Q(o0) = 0) is obtained from the same formula (30.11) by taking for Qy(z) the
function \/[(z —a,)/(a; — z)], which is also of the form (30.7), and putting P(z) = 0 in

(30.11). The result is
__l X—a, ’ a, — ¢ w(&)d¢
p(x) = nz\/az—xpj Foa T-x (30.13)

a

(30.12)

When x — a,, p(x) tends to zero as \/ (x —a,). The total stress o,,(x) + p(x) tends to zero
according to a similar law on the other side of the point a;,.

Finally, let there be no obstacle at either end of the segment, and let the dislocations be
constrained only by external stresses p(x). The corresponding €(z) is obtained by putting
in (30.11) Q(2) = \/[(az —2)(z —a,)], P(z) = 0. The condition Q(c0) = 0, however, here
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requires the fulfilment of a further condition: taking the limit as z — oo in (30.11), we find

a;

w(&)de _
j Jl@—8&—an (30.14)
The function p(x) is given by
R | () d
p(x) = = —/[(@; = %) (% al)]P_[\/[(az—é)(é—a,)]{—-x’ (30.15)

a

the coordinates a, and a, of the ends of the segment being determined by the conditions
(30.9) and (30.14).

PROBLEM

Find the distribution of dislocations in a uniform stress field p(x) = p, over a segment with obstacles at one or
both ends.
SOLUTION. When there is an obstacle at one end (a,) the calculation of the integral (30.13) gives
Po [X—a
X)=— [——.
px) aD \a; —x

The condition (30.9) determines the length of the segment occupied by dislocations: a, —a,; = 2BD/P,,. Beyond
the obstacle there is a concentration of stresses near it according to

a,—a,
QPJ—
- %2

For a segment of length 2L bounded by two obstacles we take the origin of x at the midpoint and obtain from
(30.12)

p(x) = ! (p—ox+8).
n:;(L’ —-x)\D

§31. Equilibrium of a crack in an elastic medium

The problem of the equilibrium of a crack is somewhat distinctive among the problems
of elasticity theory. From the point of view of that theory, a crack is a cavity in an elastic
medium, which exists when internal stresses are present in the medium and closes up when
the load is removed. The shape and size of the crack depend considerably on the stresses
acting on it. The mathematical feature of the problem is therefore that the boundary
conditions are given on a surface which is initially unknown and must itself be determined
in solving the problem.t

Let us consider a crack in an isotropic medium, with infinite length and uniform in the
z-direction and in a plane stress field a;,'?(x, y); this is a two-dimensional problem of
elasticity theory. We shall suppose that the stresses are symmetrical about the centre of the
cross-section of the crack. Then the outline of the cross-section will also be symmetrical
(Fig. 27). Let its length be 2L and its variable width h(x); since the crack is symmetrical,
h(— x) = h(x).

t The quantitative theory of cracks discussed here is due to G. I. Barenblatt (1959).
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We shall assume the crack to be thin (h < L). Then the boundary conditions on its
surface can be applied to the corresponding segment of the x-axis. Thus the crack is
regarded as a line of discontinuity (in the xy-plane) on which the normal component of the
displacement u, = + 4h is discontinuous.

Instead of h(x) we define a new unknown function p(x) by the formulae

L

h(x) = jp(XNx, p(=x) = —p(x). (GLD

X

The function p(x) may be conveniently, though purely formally, interpreted as a density of
straight dislocations lying in the z-direction and continuously distributed along the x-axis,
with their Burgers vectors in the y-direction.t It has been shown in §27 that a dislocation
line may be regarded as the edge of a surface of discontinuity on which the displacement u
has a discontinuity b. In the form (31.1) the discontinuity h of the normal displacement at
the point x is regarded as the sum of the Burgers vectors of all the dislocations lying to the
right of that point; the equation p(— x) = — p(x) signifies that the dislocations to the right
and to the left of the point x = 0 have opposite signs.

By means of this representation we can write down immediately an expression for the
normal stresses (a,,) on the x-axis. These consist of the stresses o,,)(x, 0) resulting from
the external loads (which for brevity we denote by p(x))and the stresses a,,"(x) due to the
deformation caused by the crack. Regarding the latter stresses as being due to dislocations
distributed over the segment (— L, L), we obtain (similarly to (30.1))

L

Uy,(f:')(x) =-D j

- L

p(EM¢

o (31.2)

for points in the segment (— L, L)itself, the integral must be taken as a principal value. For
an isotropic medium,
E
D = # = 2 ’
2n(l —a) 4n(l —o?)

(31.3)

see §28, Problem 3. The stresses g, due to such dislocations in an isotropic medium are
zero on the x-axis.

The boundary condition on the free surface of the crack, applied (as already mentioned)
to the corresponding segment of the x-axis, requires that the normal stresses g,, =

¥ It is for this reason that the theory of cracks is described here in the chapter on dislocations, although
physically the phenomena are quite different.
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ayy‘“’+p(x) be zero. This condition, however, needs to be made more precise, for the
following reason.

Let us make the assumption (which will be confirmed by the result) that the edges of the
crack join smoothly near its ends, so that the surfaces approach very closely. Then it is
necessary to take into account the forces of molecular attraction between the surfaces; the
action of these forces extends to a distance r, large compared with interatomic distances.
These forces will be of importance in a narrow region near the end of the crack where
h < rg; the length of this region will be denoted by d in order of magnitude, and will be
estimated later.

Let G be the force of molecular cohesion per unit area of the crack; it depends on the
distance h between the surfaces.t When these forces are taken into account, the boundary
condition becomes

6,, "+ p(x)—G = 0. (31.4)

It is reasonable to suppose that the shape of the crack near its end is determined by the
nature of the cohesion forces and does not depend on the external loads applied to the
body. Then, in finding the shape of the main part of the crack from the external forces p(x),
the quantity G becomes a given function G(x) independent of p(x) (over the region d,
outside which it is unimportant).

Substituting o,/ from (31.2) in (31.4), we thus obtain the following integral equation
for p(x):

p(E)dg

L
1 1
-L

Since the ends of the crack are assumed not fixed, the stresses must remain finite there.
This means that, in solving the integral equation (31.5), we now have the last of the cases

discussed in §30, for which the solution is given by (30.15). With the origin at the midpoint
of the segment (— L, L) this formula becomes

L

Y ()  d¢
p(x) = nZ\/(L X)PJ\/(LZ—CZ)é——X' (31.6)
-L

The condition (30.14) must be satisfied, which in this case gives

L L

p(x)dx G(x)dx
- = 1.7
J\/iLZ_XZ) jj(LZ_XZ) 0 (3 )

0 0
(where the integrals from — L to L have been replaced by integrals from 0 to L, using the
symmetry of the problem). Since G(x) is zero except in the range L — x ~ d, in the second
integral we can put L? — x? = 2L(L - x); the condition (31.7) then becomes

L

p(x)dx M
JJ(L’—xZ)_J(2L)’ (31.8)
0

t In the macroscopic theory, the function G(x) is to be regarded as increasing smoothly, as L — x decreases, up
to a maximum value at the end of the crack.

TOE-E*
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where M denotes the constant

d
G(&)d¢
M= , (31.9)
[
o
which depends on the medium concerned. This constant can be expressed in terms of the
ordinary macroscopic properties of the body, its elastic moduli and surface tension «; as
will be shown later, the relation is

M = /[naE/(1 - a?)]. (31.10)

The equation (31.8) determines the length 2L of the crack from the given stress
distribution p(x). For example, for a crack widened by concentrated forces fapplied to the
midpoints of the sides (p(x) = fd(x)) we find

2L = f2/M?
= f*(1 - ¢*)/naE. (31.11)

It must be remembered, however, that stable equilibrium of a crack is not possible for
every distribution p(x). For instance, with uniform widening stresses (p(x) = constant
= po) (31.8) gives

2L = 4M?*/n?p,?

= 4aE/n(1 — 0¥)p,. (31.12)

This inverse relation (L decreasing when p, increases) shows that the state is unstable. The
value of L determined by (31.12) corresponds to unstable equilibrium and gives the
“critical” crack length: longer cracks grow spontaneously, but shorter ones close up, a
result first derived by A. A. Griffith (1920).

Let us now return to the consideration of the shape of the crack. When L — x < d, the
region L — ¢ ~ d is the most important in the integral in (31.6). The integral can then be
replaced by its limiting value as x — L; the result is p = constant x \/(L —x), whencet

h(x) = constant x (L — x)3/2 (L=x ~d). (31.13)

We see that over the terminal region d the two sides of the crack in fact join smoothly.
The value of the coefficient in (31.13) depends on the properties of the cohesion forces and
can not be expressed in terms of the ordinary macroscopic parameters.}

For the part farther from the end, where d € L — x < L, the region L — ¢ ~ d is again
the most important in the integral in (31.6), and w(¢) =~ — G(£)/D. In addition to putting
L* —x? = 2L(L —x), L* = &* = 2L(L — &), we can here replace ¢ — x by L — x, obtaining
p= M/nZD\/(L—x), where M is the same constant as in (31.9), (31.10). Hence

h(x) = 2M J(L—x)/a*D  (d < L—-x < L). (31.14)

Thus the end of the crack has a shape independent of the applied forces (and therefore of

t Inorder to proceed to the limit we must first divide the integral in (31.6) into two integrals with numerators
w(§) — w(L) and w(L); the second integral makes no contribution to the limiting value.

1 An estimate of the coefficient in (31.13) gives a value of the order of \/a/d, where a is the dimension of an
atom (usinga ~ aE, M ~ E\/a), An estimate of the length d is obtained from the condition h(d) ~ ry, whence
d ~ ro’/a » ro. It should be mentioned, however, that in practice the required inequalities are satisfied only by a
small margin, so that the resulting shape of the terminal projection of the crack is not to be taken as exact.
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the length of the crack) throughout the range L — x < L: when L — x > d the shape is given
by (31.14), and when L — x ~ d it has an infinitely sharp projection (31.13) (Fig. 28). The
shape of the remainder of the crack does depend on the applied forces.

If we ignore details, of the order of the radius of action of the cohesion forces, the
crack therefore has a smooth outline with ends rounded according to the parabolas
(31.14), and this shape is entirely determined by the applied forces and the ordinary
macroscopic parameters. The small (~ d) terminal projections which actually occur are of
fundamental significance, however, since they ensure that the stresses remain finite at the
ends of the crack.

The stresses caused by the crack on the continuation of the x-axis are given by formula
(31.2). At distances x — L such that d < x — L < L, we havet

0,, =0, = M/n/(x~L). (31.15)

The increase in the stresses as the edge of the crack is approached continues according to
this law up to distarices x — L ~ d, and o, then drops to zero at the point x = L.

It remains to derive the formula (31.10) already given above, which relates the constant
M to the ordinary macroscopic quantities. To do this, we write down the condition for the
total free energy to be a minimum by equating to zero its variation under a change in the
length L.

Firstly, when the length of the crack increases by 4L the surface energy at its two free
surfaces increases by 6F ,c = 2a6 L. Secondly, the “opening” of the crack end reduces the
elastic energy F, by 4{o, (x)n(x)dx, where n(x) is the difference in width between the
displaced and undisplaced crack shapes. Since the shape of the crack end is independent of
its length, n(x) = h(x — 6 L) — h(x). The stress 6,, = 0 for x < L, and h(x) = 0 for x > L.

Hence
L+46L

O0F, = -1 J~ 0,,(x)h(x — L) dx.

L

t The integral is easily calculated directly, but it is not necessary to do this if we use the relation between the
functions p(x) for x < L and 0, for x > L, which is evident from the results of §30.



132 Dislocations §31
Substituting (31.14) and (31.15), we find

L+é6L

M? L+6L—x
Fa=-15p J \/““x—_L—d"
L
L
_ M ydy
T 2D | JEL-y)
0
MZ
= ~2p%k

Finally, the condition 6 F
(31.10).1

surt + 0F ; = 0 gives the relation M? = 4n?aD, and hence we have

t It may be noted that the theory described above, including the relation (31.10), is in fact applicable as it
stands only to ideally brittle bodies, i.e. those which remain linearly elastic up to fracture, such as glass and fused
quartz. In bodies which exhibit plasticity the formation of the crack may be accompanied by plastic deformation
at its ends.



CHAPTER V

THERMAL CONDUCTION AND VISCOSITY IN SOLIDS

§32. The equation of thermal conduction in solids

NoN-UNIFORM heating of a solid does not cause convection as it generally does in fluids.
Hence the transfer of heat is effected in solids by thermal conduction alone. The processes
of thermal conduction in solids are therefore described by somewhat simpler equations
than those for fluids, where they are complicated by convection.

The equation of thermal conduction in a solid can be derived immediately from the law
of conservation of energy in the form of an “equation of continuity for heat”. The amount
of heat absorbed per unit time in unit volume of the body is 79S/dt, where S is the entropy
per unit volume. This must be put equal to —div q, where q is the heat flux density. This
flux can almost always be written as — k grad 7, i.e. it is proportional to the temperature
gradient (x being the thermal conductivity). Thus

T3S/ot = div (k grad T). (32.1)
According to formula (6.4), the entropy can be written as
S = So(T)+ Kau;;,

where o is the thermal expansion coefficient and S, the entropy in the undeformed state.
We shall suppose that, as usually happens, the temperature differences in the body are so
small that quantities such as «, a, etc. may be regarded as constants. Then equation (32.1),
after substitution of the above expression for S, becomes

650 6u“

T—+oKT— = .
ot +a 3 kAT

According to a well-known formula of thermodynamics, we have
C,—C,=Ko’T,
whence
aKT = (C,—-C,)/a.

The time derivative of S can be written as (9S,/0T) - (0T /dt), where the derivative 6S,/0T

is taken for u;; = div u = 0, i.e. at constant volume, and therefore is equal to C,/T.
The resulting equation of thermal conduction is

or C,—-C,d

— —divu= T. .
"at+ . atdlvu KA (32.2)
In order to obtain a complete system of equations, it is necessary to add an equation
describing the deformation of a non-uniformly heated body. This is the equilibrium
equation (7.8):

2(1 — o) grad divu— (1 —20) curl curl u = $a(1 + o) grad 7. (32.3)

133
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From equation (32.3) we can in principle determine the deformation of the body for any
given temperature distribution. Substituting the expression for div u thus obtained in
equation (32.2), we derive an equation giving the temperature distribution, in which the
only unknown function is T(x, y, z, t).

For example, let us consider thermal conduction in a infinite solid in which the
temperature distribution satisfies only one condition: at infinity, the temperature tends to
aconstant value T, and there is no deformation. In such a case equation (32.3) leads to the
following relation between div u and T (see §7, Problem 8):

l1+o

divu = 31 —0)

«(T—T,).

Substituting this expression in (32.2), we obtain

(1+0)C,+2(1-20)C, 3T _
3(1—0) a

which is the ordinary equation of thermal conduction.

An equation of this type also describes the temperature distribution along a thin straight
rod, if one (or both) of its ends is free. The temperature may be assumed constant over any
transverse cross-section, so that T'is a function only of the coordinate x along the rod and
of the time. The thermal expansion of such a rod causes a change in its length, but no
departure from straightness and no internal stresses. Hence it is clear that the derivative
0S/0t in the general equation (32.1) must be taken at constant pressure and, since (05/0t),
= C,/T, the temperature distribution will satisfy the one-dimensional thermal conduction
equation C,0T/dt = kd*T /x>

It should be mentioned, however, that the temperature distribution in a solid can in
practice always be determined, with sufficient accuracy, by a simple thermal conduction
equation. The reason is that the second term on the left-hand side of equation (32.2) is a
correction of order (C, — C,)/C, relative to the first term. In solids, however, the difference
between the two specific heats is usually very small, and if it is neglected the equation of
thermal conduction in solids can always be written

oT/dt = AT, (32.5)

kAT, (32.4)

where x is the thermometric conductivity, defined as the ratio of the thermal conductivity x
to some mean specific heat per unit volume C.
§33. Thermal conduction in crystals

In an anisotropic body, the direction of the heat flux q is not in general that of the
temperature gradient. Hence, instead of the formula

q= —xgradT
relating q to the temperature gradient, we have in a crystal the more general relation
qi= —K,-kaT/axk. (331)

The tensor x;,, of rank two, is called the thermal conductivity tensor of the crystal. In
accordance with (33.1), the equation of thermal conduction (32.5) has also a more general

f
orm, oT 0T

c—
ot K"‘éx,»@x,‘

(33.2)
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A general theorem can be stated: the thermal conductivity tensor is symmetrical, i.e.
Kl'k = K- (33.3)

This relation, which we shall now prove, is a consequence of the symmetry of the kinetic
coefficients (see SP 1, §120).

The rate of increase of the total entropy of the body by irreversible processes of thermal
conduction is

: div q . q 1
Stor = — fT dv = — Jdlv?d V+ Iq 'grad?d V.
The first integral, on being transformed into a surface integral, is seen to be zero. Thus

. 1 q-grad7T
S(0(= J\(I'gl'ad?dy= - J—Tz—dy,

or

. 1 orT

St = — jF q:é}‘i dav. (33.4)

In accordance with the general definition of the kinetic coefficients,f we can deduce
from (33.4) that in the case considered the coefficients 72 k;, in

1 oT
= -T2k, [ —=—
qi K|k<Tzaxk)

are kinetic coefficients. Hence the result (33.3) follows immediately from the symmetry of
the kinetic coefficients.

The quadratic form

or 9T oT
—4; 5;‘ = Kik 5;‘ 5—x,‘
must be positive, since the time derivative (33.4) of the entropy must be positive. The
condition for a quadratic form to be positive is that the eigenvalues of the matrix of its
coefficients be positive. Hence all the principal values of the thermal conductivity tensor «;,
are always positive; this is evident also from simple considerations regarding the direction
of the heat flux.

The number of independent components of the tensor «;, depends on the symmetry of
the crystal. Since the tensor x;, is symmetrical, this number is evidently the same as the
number for the thermal expansion tensor (§10), which is also a symmetrical tensor of rank
two.

§34. Viscosity of solids

In discussing motion in elastic bodies, we have so far assumed that the deformation is
reversible. In reality, this process is thermodynamically reversible only if it occurs with
infinitesimal speed, so that thermodynamic equilibrium is established in the body at every
instant. An actual motion, however, has finite velocities; the body is not in equilibrium at
every instant, and therefore processes will take place in it which tend to return it to

t We here use the definition given in FM, §59.
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equilibrium. The existence of these processes has the result that the motion is irreversible,
and, in particular, mechanical energyt is dissipated, ultimately into heat.

The dissipation of energy occurs by two means. Firstly, when the temperature at
different points in the body is different, irreversible processes of thermal conduction take
place in it. Secondly, if any internal motion occurs in the body, there are irreversible
processes arising from the finite velocity of that motion. This means of energy dissipation
may be referred to, as in fluids, as internal friction or viscosity.

In most cases the velocity of macroscopic motions in the body is so small that the energy
dissipation is not considerable. Such “almost irreversible” processes can be described by
means of what is called the dissipative function.} If we have a mechanical system whose
motion involves the dissipation of energy, this motion can be described by the ordinary
equations of motion, with the forces acting on the system augmented by the dissipative
forces or frictional forces, which are linear functions of the velocities. These forces can be
written as the velocity derivatives of a certain quadratic function R of the velocities, called
the dissipative function. The frictional force f, corresponding to a generalized coordinate
q, of the system is then given by f, = — dR/dq,. The dissipative function R is a positive
quadratic form in the velocities 4,. The above relation is equivalent to

R = - ) f.d4,, (34.1)

where JR is the change in the dissipative function caused by an infinitesimal change in the
velocities. It can also be shown that the dissipative function is half the decrease in the
mechanical energy of the system per unit time.

It is easy to generalize equation (34.1) to the case of motion with friction in a continuous
medium. The state of the system is then defined by a continuum of generalized
coordinates. These are the displacement vector u at each point in the body. Accordingly,
the relation (34.1) can be written in the integral form

5JRdV=—jf‘.au,,dV (34.2)

where v = G and the f; are the components of the dissipative force vector f per unit volume
of the body; we write the total dissipative function for the body as | R d ¥, where R is the
dissipative function per unit volume.

Let us now determine the general form of the dissipative function R for deformed
bodies. The function R, which describes the internal friction, must be zero if there is no
internal friction, and in particular if the body executes only a general translatory or rotary
motion. In other words, the dissipative function must be zero if @ = constantor it = Q Xr.
This means that it must depend not on the velocity itself but on its gradient, and can
contain only such combinations of the derivatives as vanish when & = Q xr. These are the

sums C1fay +%
Pk =3 ox, 0x; )

i.e. the time derivatives of the components of the strain tensor.t Thus the dissipative
function must be a quadratic function of v;,. The most general form of such a function is

t By mechanical energy we here mean the sum of the kinetic energy of the macroscopic motion in the elastic
body and its (elastic) potential energy arising from the deformation.
1 See SP 1, §121.
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R = 41ikimVikOtm - (34.3)

The tensor 1;,,, of rank four, may be called the viscosity tensor. It has the following
evident symmetry properties:

Nikim = Mimik = Nkitm = Nikmi - (34.4)

The expression (34.3) is exactly analogous to the expression (10.1) for the free energy of a
crystal: the elastic modulus tensor is replaced by the tensor ;. , and u;, by v;, . Hence the
results obtained in §10 for the tensor 4, in crystals of various symmetries are wholly
valid for the tensor n;,,,, also.

In particular, the tensor n;,, in an isotropic body has only two mdcpendent
components, and R can be written in a form analogous to the expression (4.3) for the
elastic energy of an isotropic body:

R=n( %5 kvu) +2Cvu » (34.5)

where 1 and { are the two coefficients of viscosity. Since R is a positive function, the
coefficients n and { must be positive.

The relation (34.2) is entirely analogous to that for the elastic free energy, 6 (FdV =
— [Fi6u;dV, where F; = a,,/0x, is the force per unit volume. Hence the expression for
the dlss1pat1ve force f; in terms of the tensor v;, can be written down at once by analogy
with the expression for F; in terms of u;,. We have

fi= 00"y /0x,, (34.6)
where the dissipative stress tensor ¢’ is defined by
0’ = OR/0vix = NisimVim - (34.7)

The viscosity can therefore be taken into account in the equations of motion by simply
replacing the stress tensor o, in those equations by the sum o, + ¢';;.
In an isotropic body,
0'ix = 20 (0 — $0501) + Loy i (34.8)

This expression is, as we should expect, formally identical with that for the viscosity stress
tensor in a fluid.

§35. The absorption of sound in solids

The absorption of sound in solids can be calculated in a manner entirely analogous to
that used for fluids (see FM, §79). Here we shall give the calculations for an isotropic body.
The total energy dissipated in the body is the sum

Epn=—(x/T) J(VT)Z dv -2 JR dv,

t Cf. the entirely analogous arguments on the viscosity of fluids in FM, §15.

1 The existence of the dissipative function is a consequence of Onsager’s principle of the symmetry of the
kinetic coefficients. This principle leads to the first equation (34.4) for the coefficients in the linear relations (34.7),
whereby the dissipative function can be defined. This will be shown directly in a similar context in §42.
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the first term being due to thermal conduction and the second to viscosity. Using the
expression (34.5), we therefore have

Emech = ";J(grad T)Z d V— 2" J.(v“‘ —%5,-,(0“)2 d V‘_C J\vuz d V. (35.1)

To calculate the temperature gradient, we use the fact that sound oscillations are
adiabatic in the first approximation. Using the expression (6.4) for the entropy, we can
write the adiabatic condition as Sy (7)) + Kauy; = S¢(7,), where T is the temperature in
the undeformed state. Expanding the difference So(7T) — So (7o) in powers of T — T, we
have as far as the first-order terms So (7)) — So(To) = (T — Ty) 8S¢/0T = C,(T — Ty)/T,.
The derivative of the entropy is taken for u; = 0, i.e. at constant volume. Thus

T- To = — TaKu“/Cv.
Using also the relations K = K, = C,K,4/C, and K 4/p = ¢, — 4c,2/3, we can rewrite
this result as
Tap(c* —4c?/3)
—_——— U,
C i

P

T-T, = (35.2)

Let us first consider the absorption of transverse sound waves. The thermal conduction
cannot result in the absorption of these waves (in the approximation considered). For, in a
transverse wave, we have u; = 0, and therefore the temperature in it is constant, by (35.2).
Let the wave be propagated along the x-axis; then

u, =0, u, =uy, cos(kx—owt), u, =ugy,cos(kx—wt),

and the only non-zero components of the strain tensor are u,, = —3ku,, sin (kx — wt),
Uy = --ykug, sin (kx — wt).

We shall consider the energy dissipation per unit volume of the body; the (time) average
value of this quantity is, from (35.1),

2 2 2
Epech = — Inw®* (1o, + uo,2)/c.?,

where we have put k = w/c,. The total mean energy of the wave is twice the mean kinetic
energy, l.e.

E=p -[F dv;
for unit volume we have _
E = %sz(“of + quz)-

The sound absorption coefficient is defined as the ratio of the mean energy dissipation
to twice the mean energy flux in the wave; this quantity gives the manner of variation of the
wave amplitude with distance. The amplitude decreases as e ~’*. Thus we find the following
expression for the absorption coefficient for transverse waves:

¥ = 3 E peenl/CE = nw?/2pc>. (35.3)

In a longitudinal sound wave u, = u,cos (kx — wt), u, = u, = 0. A similar calculation,
using formulae (35.1) and (35.2), gives

w? 4 kTa?pc? 4c,2\?
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These formulae relate, strictly speaking, only to a completely isotropic and amorphous
body. They give, however, the correct order of magnitude for the absorption of sound in
anisotropic single crystals also.

The absorption of sound in polycrystalline bodies exhibits peculiar properties. If the
wavelength A of the sound is small in comparison with the dimensions a of the individual
crystallites (grains), then the sound is absorbed in each crystallite in the same way as in a
large crystal, and the absorption coefficient is proportional to w?.

If > a, however, the nature of the absorption is different. In such a wave we can assume
that each crystallite is subject to a uniformly distributed pressure. However, since the
crystallites are anisotropic, and so are the boundary conditions at their surfaces of contact,
the resulting deformation is not uniform. It varies considerably (by an amount of the same
order as itself) over the dimension of a crystallite, and not over one wavelength as in a
homogeneous body. When sound is absorbed, the rates of change of the deformation (v )
and the temperature gradients are of importance. Of these, the former are still of the usual
order of magnitude. The temperature gradients within each crystallite are anomalously
large, however. Hence the absorption due to thermal conduction will be large compared
with that due to viscosity, and only the former need be calculated.

Let us consider two limiting cases. The time during which the temperature is equalized
by thermal conduction over distances ~ a (the relaxation time for thermal conduction) is
of the order of a?/y. Let us first assume that w < y/a?. This means that the relaxation time
is small compared with the period of the oscillations in the wave, and so thermal
equilibrium is nearly established in each crystallite; in this case we have almost isothermal
oscillations.

Let T’ be the temperature difference in a crystallite, and T’ the corresponding difference
in an adiabatic process. The heat transferred by thermal conduction per unit volume is
~divq = k AT’ ~ kT"/a*. The amount of heat evolved in the deformation is of the order
of Ty'C ~ wT,y'C, where C is the specific heat. Equating the two, we obtain T’ ~ Ty’ wa?/y.
The temperature varies by an amount of the order of T’ over the dimension of the
crystallite, and so its gradient is of magnitude ~ T'/a. Finally, Ty’ is found from (35.2),
with u;; ~ ku ~ wu/c (u being the amplitude of the displacement vector):

Ty ~ Tapcwu/C; (35.5)

in obtaining orders of magnitude, we naturally neglect the difference between the various
velocities of sound. Using these results, we can calculate the energy dissipated per unit
volume:

E X : KTV
Emax~?(gradT) T(a) .

Dividing this by the energy flux cE ~ cpw?u?, we find the damping coefficient to be
y ~ Ta?pca*w?/xC for w < x/a® (35.6)

(C. Zener 1938). Comparing this expression with the general expressions (35.3) and (35.4),
we can say that, in the case considered, the absorption of sound by a polycrystalline body is
the same as if it had a viscosity

n ~ Ta*p*c*a®/yC,

which is much larger than the actual viscosity of the component crystallites.
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Next, let us consider the opposite limiting case, where w > y/a’. In other words, the
relaxation time is large compared with the period of oscillations in the wave, and no
noticeable equalization of the temperature differences due to the deformation can occur in
one period. It would be incorrect, however, to suppose that the temperature gradients
which determine the absorption of sound are of the order of T’ /a. This assumption would
take into account only thermal conduction in each crystallite, whereas heat exchange
between neighbouring crystallites must be of importance in the case in question (M. A.
Isakovich 1948). If the crystallites were thermally insulated the temperature differences
occurring at their boundaries would be of the same order T, as those within each
individual crystallite. In reality, however, the boundary conditions require the continuity
of the temperature across the surface separating two crystallites. We therefore have
“temperature waves” propagated away from the boundary into the crystallite; these are
damped at a distancet 6 ~ \/ (x/w). In the case under consideration 6 < a, i.e. the main
temperature gradient is of the order of T,/ and occurs over distances small compared
with the total dimension of a crystallite. The corresponding fraction of the volume of the
crystallite is ~ a28; taking the ratio of this to the total volume ~ a*, we find the mean
energy dissipation

o
mech T\ 6 a’ Taé

Substituting for T, the expression (35.5) and dividing by cE ~ cpw?u?, we obtain the
required absorption coefficient:

y ~ Tazpc\/(zw)/aC for w>» y/a’ (35.7)

It is proportional to the square root of the frequency.}

Thus the sound absorption coefficient in a polycrystalline body varies as w? at very low
frequencies (w < y/a?); for y/a* < w < c/a it varies as \/w, and for w » c/a it again varies
as ’.

Similar considerations hold for the damping of transverse waves in thin rods and plates
(C. Zener 1938). If h is the thickness of the rod or plate, then for 4 > h the transverse
temperature gradient is important, and the damping is mainly due to thermal conduction
(see the Problems). If also w < x/h?, the oscillations may be regarded as isothermal, and
therefore, in determining (for example) the characteristic frequencies of vibrations of the
rod or plate, the isothermal values of the moduli of elasticity must be used.

PROBLEMS

PROBLEM 1. Determine the damping coefficient for longitudinal vibrations of a rod.

SoLuTioN. The damping coefficient for the vibrations is defined as f = |E . |/2E; the amplitude of the
vibrations diminishes with time as e~ #'.

In a longitudinal wave, any short section of the rod is subject to simple extension or compression; the
components of the strain tensor are u,, = du,/0z,u,, = u,, = —0,40u,/0z. We put u, = ug cos kz cos wt, where

t It may be recalled that, if a thermally conducting medium is bounded by the plane x = 0, at which the excess
temperature varies periodically according to 7' = T’ e~ ‘', then the temperature distribution in the medium is
given by the “temperature wave” 7" = T" e *“' exp[— (1 +i)x\/(w/21)]; see FM, §52.

t The same frequency dependence is found for the absorption of sound propagated in a fiuid near a solid wall
(in a pipe, for instance); see FM, §79, Problems.
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k = w// (E,q/p). Calculations similar to those given above lead to the following expression for the damping
coefficient:

B

_ ! {q 3¢ - 4¢? + {c? +;(Ta’p’}
T 20 B3P -eP)e? (-3 -4c?) 9C,2

Here we have written E 4 and g,4 in terms of the velocities ¢, ¢, by means of formulae (22.4).

PROBLEM 2. The same as Problem 1, but for longitudinal oscillations of a plate.

SoLuTION. For waves whose direction of oscillation is parallel to that of their propagation (the x-axis, say) the
non-zero components of the strain tensor are

Uy = a“x/axv U, = — [:o‘.d/(l> - ald)J a“x/ax;
see (13.1). The velocity of propagation of these waves is \/ [E.g/p(1 —0,4*)]. A calculation gives
_ w? {n 3¢ +4¢* —6c2c,? {c? kTalp?(1 + d‘d)z}
= 2

+
3 C'zclz (c‘z - C'z) Clz (Clz - C'z) 9Cp2

For waves whose direction of oscillation is perpendicular to the direction of propagation, u, = 0, and the
damping is caused only by the viscosity n. In this case the damping coefficient is 8 = nw?/2pc,?. This applies also
to the damping of torsional vibrations of rods.

PrOBLEM 3. Determine the damping coefficient for transverse vibrations of a rod (with frequencies such that
> x/h?, where h is the thickness of the rod).

SoLuTIiON. The damping is due mainly to thermal conduction. According to §17, we have for each volume
element in the rod u;, = x/R, u,, = u,, = —a,4x/R (for bending in the xz-plane); for w > yx/h?, the vibrations
are adiabatic. For small deflections the radius of curvature R = 1/X", so that u; = (1 — 20,4)x X", the prime
denoting differentiation with respect to z. The temperature varies most rapidly across the rod, and so
(grad T)? = (8T/dx)*. Using (35.1) and (35.2), we obtain for the total mean energy dissipation in the rod
— (kTa? E,4S/9C,?) | X"* dz, where S is the cross-sectional area of the rod. The mean total energy is twice the

potential energy E4I, [ X" dz. The damping coefficient is
B = KTa?SE,y/181,C,?.

PROBLEM 4. The same as Problem 3, but for transverse vibrations of a plate.
SOLUTION. According to (11.4), we have for any volume element in the plate
1-20,4 i 6_1C

u; = —
-0,y 0x?

for bending in the xz-plane. The energy dissipation is found from formulae (35.1) and (35.2) and the mean total
energy is twice the expression (11.6). The damping coefficient is

_WTa?Ey 140,y 2Talp (3¢ -4}
3IC,2 1-0, 3C2R (P -cP)c?

PROBLEM 5. Determine the change in the characteristic frequencies of transverse vibrations of a rod due to
the fact that the vibrations are not adiabatic. The rod is in the form of a long plate of thickness h. The surface of
the rod is supposed thermally insulated.

SOLUTION. Let T,4(x, t) be the temperature distribution in the rod for adiabatic vibrations, and T(x, t) the
actual temperature distribution; x is a coordinate across the thickness of the rod, and the temperature variation in
the yz-plane is neglected. Since, for T = T4, there is no heat exchange between various parts of the body, it is
clear that the thermal conduction equation must be
T

P
Lr-T)=1%=.
T~ Taa) =253

For periodic vibrations of frequency w, the differences 1,4y = T,4—To, 1 =T —T, from the equilibrium
temperature T, are proportional to e "', and we have t” + iwt/y = iwt,4/), the prime denoting differentiation
with respect to x. Since, by (35.2), t,q4 is proportional to ,,, and the components u;, are proportional to x (see
§17), it follows that t,4 = Ax, where A4 is a constant which need not be calculated, since it does not appear in the
final result. The solution of the equation t” + iwt/y = iwAx/y, with the boundary condition v’ = 0for x = +4h
(the surface of the rod being insulated), is

sin kx .
t=A(X—m>. k=(l+')\/(w/21)~
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The moment M, of the internal stress forces in a rod bent in the xz-plane is composed of the isothermal part
M, s (i.c. the value for isothermal bending) and the part due to the non-uniform heating of the rod. If M, 4 is

the moment in adiabatic bending, the second part of the moment is reduced from M, ,4— M, in the ratio
th th
1 +f(w) = erdz/ jzraddz.
L - 4h

Defining the Young's modulus E,, for any frequency w as the coefficient of proportionality between M and
1,/R (see (17.8)),and noticing that E 4 — E = EXTa?/9C, (see (6.8);, E is the isothermal Young’s modulus), we can
put
E,=E+[1+/f(w)] E*Ta?/9C,.

A calculation shows that f(w) = (24/k*h*) ($kh — tan $kh). For w — oo we obtain f = 1, which is correct, since
E, =E,.and forw =0, f=0and E, = E.

The frequencies of the characteristic vibrations are proportional to the square root of the Young's modulus
(see §25, Problems 4--6). Hence

ETa?
w=w| | +f(wy) l—é(_f; R

where w, are the characteristic frequencies for adiabatic vibrations. This value of w is complex. Separating the
real and imaginary parts (w = ' +if), we find the characteristic frequencies

, |:l ET2? 1 sinhé—siné]

W = wp

3C, & coshé +cosé
and the damping coefficient
8 ZETa‘x[ ] sinhc’+siné]
T 3G, & coshZ+cos¢ |’
where & = h\/(a)o/21).
For large ¢ the frequency w tends to wy, as it should. and the damping coefficient to 2E7x*x/3C,h? . in
accordance with the result of Problem 3.
Small values of ¢ correspond to almost isothermal conditions; in this case

N ETqa? .
w = W 1—rga > wo ' (E/Eg )

and the damping coefficient § = ETa’h’wy?/180C, x.

§36. Highly viscous fluids

For typical fluids, the Navier-Stokes equations are valid if the periods of the motion are
large compared with times characterizing the molecules. This, however, is not true for very
viscous fluids. In such fluids, the usual equations of fluid mechanics become invalid for
much larger periods of the motion. There are viscous fluids which, during short intervals of
time (though these are long compared with molecular times). behave as solids (for
instance, glycerine and resin). Amorphous solids (for instance, glass) may be regarded as a
limiting case of such fluids having a very large viscosity.

The properties of these fluids can be described by the following method. due to
Maxwell. They are elastically deformed during short intervals of time. When the
deformation ceases, shear stresses remain in them, although these are damped in the
course of time, so that after a sufficiently long time almost no internal stress remains in the
fluid. Let t be of the order of the time during which the stresses are damped (sometimes
called the Maxwellian relaxation time). Let us suppose that the fluid is subjected to some
variable external forces, which vary periodically in time with frequency w. If the period 1/w
is large compared with the relaxation time 1, i.e. wt < 1, the fluid under consideration will
behave as an ordinary viscous fluid. If, however, the frequency w is sufficiently large (so
that wt » 1), the fluid will behave as an amorphous solid.
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In accordance with these “intermediate” properties, the fluids in question can be
characterized by both a viscosity coefficient n and a modulus of rigidity . It is easy to
obtain a relation between the orders of magnitude of 5, u and the relaxation time t. When
periodic forces of sufficiently small frequency act, and so the fluid behaves like an ordinary
fluid, the stress tensor is given by the usual expression for viscosity stresses in a fluid, i.e.

Oix = 2']!1“‘ = —Zia)nu“‘.

In the opposite limit of large frequencies, the fluid behaves like a solid, and the internal
stresses must be given by the formulae of the theory of elasticity, i.e. 6;, = 2uu;, ; we are
speaking of pure shear deformations, i.e. we assume that u; = g;; = 0. For frequencies
o ~ 1/1, the stresses given by these two expressions must be of the same order of
magnitude. Thus nu/At ~ pu/A, whence

n~1u. (36.1)

This is the required relation.

Finally, let us derive the equation of motion which qualitatively describes the behaviour
of these fluids. To do so, we make a very simple assumption concerning the damping of the
internal stresses (When motion ceases): namely, that they are damped exponentially, i.e.
do;,/dt = —a;, /7. Inasolid, however, we have o;, = 2uu;, ,and sodo;,/dt = 2uduy;,/dt. It
is easy to see that the equation

doy  ou du;,
it + = 2u ar (36.2)
gives the correct result in both limiting cases of slow and rapid motions, and may therefore.
serve as an interpolatory equation for intermediate cases.
For example, in periodic motion, where u;, and o;, depend on the time through a factor

e ' we have from (36.2) —iwa;, + 6,/ = — 2iwpu,,, whence
2pu;,
o - 363
Ti 1+i/wt (363

For wt > 1, this formula gives g;;, = 2uu;,, i.e. the usual expression for solid bodies, while
for wt < 1 wehave g;, = —2iwptu;, = 2utu;,, , the usual expression for a fluid of viscosity

ut.



CHAPTER VI

MECHANICS OF LIQUID CRYSTALSY

§37. Static deformations of nematics

LiQuiD crystals are, macroscopically, anisotropic fluids. The mechanics of these subst-
ances has features characteristic of ordinary liquids and of elastic media, and is in this
respect intermediate between fluid mechanics and elasticity theory.

There are various types of liquid crystals. The nematic liquid crystals or nematics are
substances which in the undeformed state are both macroscopically and microscopically
homogeneous; the anisotropy of the medium is due only to the anisotropic spatial
orientation of the molecules (see SP 1, §§ 139, 140). The great majority of known nematics
belong to the simplest type, in which the anisotropy is fully defined by specifying at each
point in the medium a unit vector n along one particular direction; n is called the director.
The quantities n and —n are physically equivalent, and so only a particular axis is
distinguished, the two opposite directions along it being equivalent. The properties of
these nematics in each volume element are invariant under inversion (a change in sign of all
three coordinates).; Only this type of nematic liquid crystals will be discussed here.

The state of a nematic substance is thus described by specifying at each point, together
with the usual quantities for a liquid (density p, pressure p and velocity v), the director n.
All these appear as unknown functions of coordinates and time, in the equation of motion
of a nematic.

In equilibrium, a nematic at rest under no external forces (which includes forces exerted
by the boundary walls) is homogeneous, with n constant throughout its volume. In a
deformed nematic, the direction of n varies slowly in space, the word “slowly” being taken
in the sense usual in macroscopic theory: the characteristic dimensions of the deformation
are much greater than molecular dimensions, so that the derivatives dn,/dx, are to be
regarded as small quantities.

In this chapter, it will be more convenient to relate all thermodynamic quantities to unit
volume of the deformed body, not of the undeformed body as in previous chapters. Then
the free energy density F of a nematic substance is made up of the free energy F, (p, T) of
the undeformed nematic and the deformation energy F,. The latter is given by an
expression quadratic in the derivatives of n, its general form being

Fd = F—Fo
=4K, (divn)* +4K, (n-curl n)? +4K; (nxcurl n)?; (37.1)

see SP 1, §140. For the unit vector n(r), since Vn® = 0,

t This chapter was written jointly with L. P. Pitaevskii.

1 Nematics not invariant under inversion are unstable with respect to a deformation which converts them into
cholesterics; see SP 1, §140, and §44 below.
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nXcurln= —(n-V)n, (37.2)

and so the last term in (37.1) can be written in the equivalent form 4K, [ (n-V)n]2.

The energy (37.1) in nematic mechanics has a role similar to the elastic energy of a
deformed solid, and its presence gives this mechanis some of the features of elasticity
theory.t

The three quadratic combinations of derivatives in (37.1) are independent; each can be
different from zero when the other two are not. The condition for the undeformed state to
be stable is therefore that all three coefficients K,, K,, K5 (functions of density and
temperature) be positive. We call these the elastic moduli or Frank’s moduli of the nematic.

Deformations in which only one of the quantities div n, n-curl n and n X curl n is not zero
are called respectively splays, twists and bends. In general, of course, the deformation of a
nematic includes all three kinds simultaneously. To illustrate their nature, some simple
examples will be given. Let a nematic medium occupy the space between two coaxial
cylindrical surfaces; r, ¢, z be cylindrical polar coordinates with the z-axis along the axis of
the cylinders. If the director n is radial at every point in the medium (n, = 1,n, = n, = 0),
the deformation is a splay (div n = 1/r). If it is everywhere along a circle whose centre is on
the z-axis (ny = 1, n, = n, = 0), we have a pure bend (curl,n = 1/r). If the director changes
across a plane parallel slab of nematic at right angles to the z-axis according to
n, = cos @ (z), n, = sin@(z), n, = 0, we have a pure twist (n-curl n = —¢'(2)).

The walls which form the boundary of the volume occupied by a liquid crystal, and the
free surface, tend to orient the medium, as will be discussed more fully below. Hence the
mere presence of a boundary causes in general a deformation of a liquid crystal at rest. The
question arises of finding the equations which describe this deformation, that is, which
determine the equilibrium distribution n(r) for given boundary conditions (J. L. Ericksen
1966).

To do so, we start from the general thermodynamic condition of equilibrium: a
minimum of the total free energy | F d¥, which is a functional of n(r). Since n is a unit
vector, this functional is to be minimized with the auxiliary condition n? = 1. With the
familiar method of undetermined Lagrange multipliers, we must equate to zero the
variation

5J{F—51(r)n2}dv, (37.3)

where A(r) is an arbitrary function.
The integrand depends on the functions n,(r) and on their derivatives. We have}

oF oF
6JW=H6 ot S .)a“s"}

oF oF d
=J‘{6_n, aa(ak .)}6 ndV +§a(a,‘ l)<5n Jd A (37.4)

t Deformation of a liquid crystal causes in general dielectric polarization of it and accordingly the presence of
an electric field (the piezoelectric or flexoelectric effect; see ECM, §17). This effect is usually weak, and its influence
on the mechanical properties of the substance will here be neglected. We shall also ignore the influence of an
external magnetic field on the properties of liquid crystals; because of the anisotropy of thg magnetic (in practice
diamagnetic) susceptibility of the nematic, a magnetic field has an orienting effect on it, which may be
considerable.

1 In this chapter, to simplify the notation, we shall use the abbreviation ; = d/dx; for the operator of
differentiation with respect to a coordinate, which is common in recent literature.
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The second term, an integral over the surface of the body, is important only in determining
the boundary conditions. Putting at present dn = 0 at the boundaries, we thus find as the
variation of the total free energy

6JFdV= —JH-&ndV, (37.5)

where H is a vector whose components are
H,' = ah n,“- - aF/ani, nu = 6F/a(5,‘ n"). (37.6)

This H acts as a field which tends to “straighten out” the direction of n throughout the

liquid crystal, and is called the molecular field.
Equation (37.3) becomes

J(H+}.n)'6ndV=0,

from which, since the variation én is arbitrary, we find the equilibrium equation H = — An.
Hence A = —H-n, so that the longitudinal component of this equation is satisfied
by choosing A. The equilibrium equation thus reduces in practice to the condition that H
and n be collinear at every point in the medium; the longitudinal component of H has no
physical significance. The equilibrium condition may therefore be written as

bh=H-n(n-H)=0, (37.7)

with a vector h which is such that n-h = 0.
An explicit expression can be found for the molecular field corresponding to the free
energy (37.1). To differentiate with respect to d,n;, we note that

divn=4gn, curln=e,;dn

(where e, is the antisymmetric unit tensor), and so

ddivn 0 curlin = e
8@m) ™ @y T
The resulting expression for the tensor I1,; is
[Ty = K, é; divn+ K, (n-curl n)ne,; + K; [ (nxcurl n)xn], e, (37.8)

The further differentiation in accordance with the definition (37.6) yields the following
fairly complicated formula for the molecular field:

H =V (K,divn) - {K;(n-curl n) curl n +curl [K; (n-curln)n] } +
+ K3 [ (nxcurl n)Xcurl n] + curl [ K3 nX(nXcurln)]. (37.9)

The boundary conditions on the equations of equilibrium cannot be derived in a general
form: they depend not only on the elastic energy (37.1) but also on the specific form of
interaction between the liquid and the boundary wall. This surface energy would have to
be included in the free energy which is minimized in order to obtain the equilibrium
conditions. In practice, the surface forces are usually so great as to determine the direction
of n at the boundary regardless of the type of deformation within the sample. If the solid
boundary surface is anisotropic, this direction is entirely definite or is one of the few such
directions. If it is isotropic, however, including the case of a free surface, only the angle
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between nand the normal to the surface is specified. If this angle is zero, the direction of nis
definite, along the normal to the surface. If the angle is not zero, the possible directions
form a conical surface with a definite vertex angle.

In the latter case, an additional boundary condition has to be imposed. This is
determined by the requirement that the surface integral in (37.4) be zero for variations dn
that are rotations of n about the normal at each point on the surface without change in the
angle to the normal (that is, variations which do not affect the surface energy). Such
variations have the form én = vXn ¢, where v is a unit vector along the normal, and ¢ is
the angle of rotation, which is arbitrary (at each point on the surface). Writing the surface
element as df = vdf, we find

§nk|‘ €imnNp Vm Vk 6¢df= 0;

from which, since 8¢ is arbitrary, we get the boundary condition

I,i €imn Ny Vi Vi = 0, (37.10)
or, if the z-axis is along v,

,n,—TIyn, =0. (37.11)

Lastly, the following comment may be made regarding the elastic moduli occurring in
(37.1). Since they are defined as coefficients in the free energy, they determine the
isothermal deformations of the body. It is easy to see, however, that the same coefficients in
nematics determine the adiabatic deformations also. We have seen in §6 that for a solid the
difference between the isothermal and adiabatic moduli results from a term in the free
energy that is linear in the strain tensor. A term linear in the derivatives d,n; might play a
similar role for nematics. Such a term would have to be a scalar and also invariant under a
change in the sign of n. It is evident that no such term can be constructed: the product
n-curl nis a pseudoscalar, and the only true scalar is div n, which changes sign with n. For
this reason, the isothermal and adiabatic moduli of a nematic are the same, just as for the
shear modulus of an isotropic solid (§6). These arguments can also be expressed in a
slightly different manner. In the absence of a linear term, the quadratic elastic energy (37.1)
is a first “small correction” to the thermodynamic quantities for an undeformed body. The
theorem of small increments (SP 1, §15) shows that, when expressed in terms of the
corresponding thermodynamic variables (temperature or entropy), this correction is the
same for the free energy and the internal energy.

§38. Straight disclinations in nematics

The equilibrium state of a nematic substance with given boundary conditions does not
necessarily have at all points a continuous distribution n(r) with a definite direction of the
vector n everywhere. In the mechanics of nematics, it is necessary to consider also
deformations where n(r) may have singular points or lines at which the direction of nis not
definite. The linear singularities are called disclinations.

The necessary occurrence of disclinations may be illustrated by means of simple
examples. Let us consider a nematic in a long cylindrical vessel, the boundary conditions
requiring n to be perpendicular to the surface of the vessel. It is reasonable to expect that in
equilibrium the vector n at each point lies radially in the cross-section of the cylinder (Fig.
29a); the direction of n is then obviously indeterminate on the cylinder axis, which is
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Fic. 29

therefore a disclination. If, on the other hand, the boundary conditions require n to be
parallel to the vessel wall and in the cross-section plane, we get a distribution in which the
vectors n are everywhere along concentric circles in the cross-section planes, with the
centre on the cylinder axis (Fig. 29b); here again, the direction of n on the axis is
indeterminate.

These are two simple cases of straight disclinations. Let us now take the general problem
of the possible distributions n(r) in straight disclinations in an infinite nematic medium.
The distribution n(r) in such a disclination is evidently independent of the coordinate
along its length, and we need therefore consider the distribution only in planes
perpendicular to the disclination axis. We shall suppose that nitself is everywhere in such a
plane. Thus we have a two-dimensional problem in the mechanics of nematics. Some
general properties of the solution can be derived from general arguments without looking
at any specific equilibrium equations.

We use cylindrical polar coordinates r, ¢, z, with the z-axis along the disclination axis. As
already noted, the distribution n(r) is independent of z. It also cannot depend on r, since in
the problem as formulated (a disclination in an infinite medium) there are no parameters
having the dimensions of length from which a dimensionless function of r, such as n(r) is,
could be constructed. The required distribution therefore depends only on the angle
variable: n = n(¢).

Let y be the angle between n and the position vector in the plane z = constant through a
given point (Fig. 30); the components of the two-dimensional (in this plane) vector n are

n, =cosy, ny,=siny.

FiG. 30

The polar angle ¢ is measured from some chosen polar axis in the plane. We shall use also
the angle 3 between n and the polar axis; evidently § = ¢ + y.

The required solution is given by the function y(¢). It must satisfy the condition of
physical uniqueness: when ¢ changes by 2x (that is, in a passage round the origin), n must
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be unchanged apart from sign (a change of sign is permissible, since the directions n and
—n are physically equivalent). This means that we must have

3(¢ + 2n) = Y(¢) + 2nn,

where n is a positive or negative integer or half-integer; n = 0 corresponds to the
“undeformed” state n = constant. Hence y/(¢) = 3 — ¢ is such that

Y(d+2n) = 2n(n— 1)+ Y () (38.1)

The number n is called the Frank index of the disclination.
The equation of equilibrium (to be written out below) determines the derivative dy/d¢:

dy/dé =1/ 1 (), (38.2)

the right-hand side does not contain the independent variable ¢, because the equation
must be invariant under any rotation of the whole nematic system about the z-axis (i.e. a
transformation ¢ — ¢ + ¢,). The function f () is periodic, with period =, since the values
¥ and ¥ + n are physically identical. Hence

v

¢ = Jf(x) dx, (38.3)
0
tl_le constant of integration being chosen so that y = 0 when ¢ = 0. Substitution in (38.1)
gives

1

S==|fdx = Tl (38.4)

§

if n # 1; the bar denotes averaging over the period of the function.

From this, we can draw an important conclusion as to the symmetry of the disclination:
when the whole picture is rotated through ¢ = 2n/2(n — 1) about the z-axis, the angle
changes by =, the distribution thus remaining unchanged: when the periodicity of f () is
taken into account, this transformation gives the identity

y+nr y+n

¢+ = ff(x)dx—ff(x dx + f f(x)dx = ¢ +]r.
0o

Thus, simply from the condition of uniqueness, the z-axis is necessarily a symmetry axis C,,
whose order is
m=2n-1|, n#l (38.5)
The “streamlines” of the director are such that at each point the element of length dl
(dl, = dr, dl, = rd¢) is parallel to n. The differential equation of these lines is

dly/dl, = ny/n,,
or
d¢/dlogr = tany. (38.6)

From this we see, in particular, that the streamlines include some that are straight, with
¢ = pr and p an integer. These are 2|n — 1| radii

¢ = pP=¢,, Yy=pn, p=0,1,2,...,m—1. (38.7)

In—1
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The cross-section plane of the disclination is divided by these radii into m equal sectors.
Let us now go on to the specific solution for a nematic whose deformation energy is
given by (37.1).1
For a two-dimensional distribution,
1dny, n,

. 1 ,
lel‘l—;d—¢;+T—;COSl//°(l+ll/),

1d 1.
curl,n = ———nf+n7¢=;sm¢-(l+¢'),

r do
n-curln =0,

with ' = dy/d¢. In the free energy only the K, and K; terms remain:}

jFﬂdrdg& =}(K,+K3) j(l —acos2y) (1 +¢'*)de¢dr/r,
a=(K;—K)/(K3+K)).

The integral with respect to r is logarithmically divergent. In actual problems it is cut oft
above at some distance R that is of the order of the dimensions of the sample, and below at
distances of the order of the molecular dimensions a, where the macroscopic theory ceases
to be valid. To determine the required solution at distances a < r < R, we can take the
factor

L = [dr/r ~ log(R/a)

to be a constant simply, so that the equilibrium distribution (¢) is found by minimizing
the functional

p2
I (1 —acos2y) (1 +y'?)d¢ = minimum. (38.8)
0
Euler’s equation for this variational problem is
(1 —acos2y)y” = asin2y (1 —y'?). (38.9)
This has, first of all, the two obvious solutions
Y =0 (38.10)
and
Y =4n (38.11)

These are axially symmetrical solutions corresponding to Figs. 29a and 29b respectively.§
They are single-valued; that is, the Frank index for these disclinations is n = 1 (cf. (38.1)).

t This problem was solved by C. W. Oseen (1933) and F. C. Frank (1958) for the particular case of a nematic
with K, = K. The general solution given below is due to I. E. Dzyaloshinskii (1970).

1 The integrand does not include the total derivative (1 — xcos 2y) 2y’ = (2y — asin 2y)’; this does not affect
the formulation of the variational problem. We shall here derive the equation of equilibrium afresh, without
reverting to the general equations (37.7), (37.8), which would in practice call for a more laborious calculation.

§ In the “degenerate” case K, = K, a = 0, there are solutions with y = any constant.
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To find solutions with n # 1, we note that (38.9) has a first integralt
(1 —acos2y) (y'* — 1) = constant = ql—z— 1. (38.12)

From this, the solution has the form (38.3), with

1—acos2y |
The constant g is found from the condition (38.4):
1-acos2y ‘
0

here, we must have |«|q? < 1. These formulae give the required solution. The solution is
unique for each n; since the left-hand side of (38.14) increases monotonically with g, the
equation is satisfied by only one value of g. Since f (x) is even, ¢ (¢) is odd. The plane ¢ = 0
is therefore a plane of symmetry for the distribution,; since there is a symmetry axis C,,,
there are consequently another m — 1 planes of symmetry passing through the z-axis.
Lastly, z = Ois evidently a plane of symmetry. Thus a disclination with index n has the full
symmetry of the point group D,,.
When n = 2, it is obvious from (38.14) that g = 1, and the corresponding solution is
simply
y=¢ =149 (38.15)

To determine the qualitative nature of the solutions found, let us examine the behaviour
of the streamlines near the radii ¢ = ¢, (38.7). On these radii, 4 = pn, and near them
¥ ~ pm; the function (38.13) becomes a constant:

dé

el 2% =2 38.16
E—f(w)=q<l_aqz> =1 (38.16)

Hence
Y—mp = (d—¢,)/A

The differential equation of the streamlines is

dl
o8’ =coty ~ : = L
d¢ ll’ - t//p ¢ - ¢p
from which we find the streamlines near the radius:
r = constant x |¢ —,|*. (38.17)

With Cartesian coordinates and the x-axis along the radius, we have near the latter r ~ x,
¢ — ¢, ~ y/x; the streamline equation becomes

y = constant x x'* /4, (38.18)

t If the integrand in (38.8) is regarded as the Lagrangian of a one-dimensional mechanical system (with  as
the generalized ¢oordinate and ¢ as the time), then (38.12) is the energy integral.
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Various cases have now to be considered. When n >3, n—1 > 0, and from (38.14) ¢
> 0, so that 4 > 0. In this case, the streamlines start from the origin and the radius is a
tangent to them.

Whenn = 4, ¢ < 0,and so 4 < 0. A numerical analysis of (38.14) shows that q*> > land
therefore |4| > 1. From (38.18), y increases with x. The region near the origin cannot be
dealt with in this way, since according to (38.17), when A < 0, small values of ¢ — ¢,
correspond to large r.

Lastly, when n <0, —1 < 4 <0, and from (38.18) y —» 0 as x — oo; the streamlines
approach the radii asymptotically.

Figure 31 shows schematically the streamlines for disclinations with n = 3,4and -4

FiG. 31

§39. Non-singular axially symmetrical solution of the
equilibrium equations for a nematic

The axially symmetrical deformations (38.10), (38.11) (Fig. 29) are disclinations with
Frank index n = 1 and are exact solutions of the equations of equilibrium for a nematic
medium with specified boundary conditions at the walls of the container. They are not,
however, the only solutions of such problems. They are unique only as two-dimensional
solutions. If we abandon the hypothesis that the vectors n are everywhere in planes
transverse to the axis of the vessel, other solutions are possible which do not have a
singularity on the axis. For example, if the boundary conditions are such that n must be
perpendicular to the wall, the director streamlines in such a singularity-free solution are in
meridional planes as shown in Fig. 32. At the wall, they leave at right angles, then bend
towards the axis r = 0, on which n therefore has a quite definite direction. Moreover, we
shall see that the absence of singularities from such a solution makes it thermodynamically
more favourable (the total elastic free energy is less) than one with a singularity on the axis
(P. E. Cladis and M. Kléman 1972). Let us now proceed to construct this solution.

We shall seek a solution that is axially symmetrical and uniform along the z-axis in
cylindrical polar coordinates:

n,=cosx(r), n,=0, n,=siny(r); (39.1)

the angle y is as shown in Fig. 32. The boundary condition at the wall is
x=0 for r=R (39.2)
where R is the radius of the cylindrical vessel, and on the axis we impose the condition

x=1%n for r=0, (39.3)
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which, as already shown, corresponds to the absence of any singularity. We have

curlyn = —dn,/dr = —cos x-dy/dr,

d(rn,) . dy cosy
ar T TGt

The free energy of the deformation per unit length along the z-axis is

divn =1
r

logR

Iﬂ‘hrdr =n {(K, sin? y + K3 cos? x)x'* + K, cos® y — K, sin 2y - ' }d¢,

0 -

(394)

where the prime denotes differentiation with respect to the variable ¢ = logr.t
The first integral of the equilibrium equation (that is, Euler’s equation for the
variational problem of finding the minimum of the functional (39.4)) is

(K, sin? y + K3 cos? y)x'? — K, cos? y = constant. (39.5)
X X

According to the condition (39.3), we must have y —»4n and ¢ - — . This evidently
implies that ' — 0 as y — 4n; the constant is therefore zero, so that

. \/chosx
=7 J(K, siny+Kscos’y)

From this we get the required solution, satisfying the condition (39.2), as

X
1 V(K sin? x + K5 cos?y)
= . 39.6
log (R/r) \7K‘J cos 1 dy (39:6)

0

In contrast to the disclination (38.10), this solution is not self-similar, since it involves the

t The last term in the integrand is unimportant in stating the variational problem, but is needed when
calculating the total free energy.
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dimensional length parameter R. The integral (39.6) can be expressed in terms of
elementary functions. The result, if K; > K, is

J (1 —k?sin? y) — K’ sin x k o
R = - - = k ,
r/ \/ {7(1—1(2 sinZg) +Ksing | OP) s (ksiny) (39.7)

k2=(K3—K1)/K3, k,2=1—k2=K1/K3.

When r —»0,4n—x tends to zero as r, and the streamlines approach the z-axis
exponentially: r oc exp (constant x z). The free energy associated with this solution is
found to be

R
jF,,-andr=nK1{2+&sin“‘k}. (39.8)

This is independent of the radius R of the vessel. The energy of the disclination in Fig. 29a
(the solution (38.10)) is

R
J Fy-2nrdr =K, L, (39.9)
0

where L = log (R/a) is a large logarithm arising from the singularity on the axis. We see
that the solution without a singularity is energetically more favourable than the other,
unless K, is unusually small.

The field n(r) of this axially symmetrical non-singular solution of the equations of
equilibrium can be derived from that of a disclination with n = 1 by a deformation that is
continuous, i.e. does not involve tearing, the vectors n being gradually brought away from
the planes z = constant. This is one case of a very general situation to be discussed in §40.

PROBLEMS

ProsLEM 1. Find the axially symmetrical solution of the equations of equilibrium for a nematic medium in a
cylindrical vessel, having no singularity on the axis and corresponding to the boundary conditions in Fig. 29b.

SoLuTION. We seek the solution in the form
n, =0, nyg=cosy(r), n,=siny(r)
with the boundary conditions
x(R)=0, x(0)= 4=
Then
curlym = —cos y dy/dr,

curl,n = (1/r)cos x —sin ydy/dr,

diva = 0.
The free energy is
R log R
f 2nrF,dr=n I {K;(sin y cos y — x')* + K3 cos* x } d¢&.
4] -®

The first integral of the equilibrium equation is
K:x?*—(K;sin? ycos? y + K3 cos* y) = 0.
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Integration of this gives (if K3 > K3)
/R = \/{\/(1 ~k? sinzx)—k'sinx}
(L —k?sin? y) + k' siny |
k? = (K3 _Kz)/KJ:k'z = K,/K;.
As r -0, y - in in the manner $n — y = 2k'r/R.

The free energy of this deformation is
R

1
JF,'andr:nK2{2+WSIn 'k},

]
whereas that of the two-dimensional disclination in Fig. 29b is nK; L.

PrOBLEM 2. Examine the stability of disclinations with n = 1 with respect to small perturbations having the
form én(¢) (S. I. Anisimov and I. E. Dzyaloshinskii 1972).

SOLUTION. (a) The unperturbed field of a radial discliniation (Fig. 29a)is n, = 1, n, = n, = 0. The perturbed
field will be written as

n, =cos @ cos ® = | — (O + ®?),
n,=cos@sin® =9,
n,=sin® = Q.

where the angles © and ® are functions of the angle coordinate ¢. The energy associated with this perturbation is
J.F,rdrdda =iR? J‘{Kl P+ K,0%+(K; —K,)0? - K,0%}d¢.
For a general analysis, we should have to put

OW)= T 0% 0= ¥

5= - s= -

and express the energy as a function of all the @, and ®,. It is, however, immediately obvious that the disclination
in question is always unstable with respect to the perturbation ©,, because of the term — K, ©,? in the energy.

(b) The unperturbed field of a circular disclination (Fig. 29b) is n, = n, = 0, n, = 1. We write the perturbed
field as

n,=cos®cos(3n+®) ~ — b,
ny = cos @ sin (41 +P) ~ 1 - 4O + 0?),
n,=sin® >~ @;

here, the definition of ® is different from that in the preceding case. The corresponding energy is
fF,rdrdq& =}R? '[{K,(O‘z + @)+ (K, —K;3)0* + (K, —2K3)©%} d¢.

The most “dangerous” perturbations are @, and ®,; the stability conditions for these are
K, > K;, K;>2K,;.

In itself, the result in the text and in Problem 1 that the free energy of the deformation in disclinations with
n = ] exceeds that of the non-singular axially symmetrical solution signifies only that these disclinations are at
best metastable. We now see that the radial disclination is altogether unstable, and the circular one is stable (as
regards perturbations of the type considered) only when certain relations exist between the elastic moduli.

PROBLEM 3. A nematic medium occupies the space between two parallel planes; the boundary conditions
require the director to be perpendicular to one plane and parallel to the other. Determine the equilibrium
configuration n(r).

SOLUTION. The equilibrium configuration is evidently two-dimensional; we take the relevant plane as the xz-
plane, with the z-axis perpendicular to the boundary planes (z = 0 and z = h). We put

n, = sinx(z), n, =cosx(2).



156 Mechanics of Liquid Crystals §40
The free energy of the deformation is

jF,dz =1 J'{K, sin?y + K, cos? y} y'2 dz.
The first integral of the equilibrium equation is

K, sin? y + K, cos? y)x'? = constant,
X

whence, with the boundary conditions,

X in

J.\/(Kl sin? y + K, cos? y)dy = (z/h)J‘ VK, sin? x + K, cos? y)dy,
)

1]
or

z = hE(x, k}/E(n, k), k* = (K,-K,)/K,,
where E(y, k) is an elliptic integral of the second kind.

§40. Topological properties of disclinations

The definition of the Frank index given in §38 depended essentially on the assumption
that the disclination deformation is two-dimensional and is uniform along the discli-
nation. We shall now show how this concept can be used in the general case of any curved
disclinations in a nematic medium.

The energy of the nematic is not affected by a simultaneous arbitrary rotation of the
director at every point. In this sense, we can say that the states of the nematic are
degenerate with respect to the directions of the director, which are referred to as a
degeneracy parameter. We can define degeneracy space as the range of variation of the
degeneracy parameter that can occur without a change in energy. In the present case, this is
the surface of a sphere with unit radius, each point of which corresponds to a particular
direction of n. Here, however, we must also take into account that states of a nematic that
differ by a change in the sign of n are physically identical. That is, diametrically opposite
points on the sphere are physically equivalent. The degeneracy space of the nematic is
therefore a sphere on which every pair of opposite points are regarded as equivalent.t

Let us imagine that, in the physical volume of the nematic, we pass along a closed
contour y round a disclination line. We trace this passage in terms of the direction of n. The
point representing it in the spherical degeneracy space describes another closed contour
I'. Two cases are to be distinguished here.

In one case, I is literally closed. In returning to its original position, the point describes
an integral number n of loops (for instance, n = 1 and 2 for the contours I';y and I'"; in
Fig. 33). This number is the integral Frank index.

FiG. 33

t In topology, this geometrical picture corresponds to what is called a projective plane.
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In the other case, I starts from a point on the sphere and ends at the diametrically
opposite point. Such a contour also is to be regarded as closed, since diametrically
opposite points are equivalent. The Frank index is defined as the half-integral number of
“loops” then described by the point (for instance, n = 4 for the semicircle I’ 3

Any closed contour on a sphere can be transformed into any other by a continuous
deformation (i.e. one that does not break the contour). Moreover, any closed contour can
be continuously shrunk to a point.t

It is also possible to transform into one another any contours which begin and end at
diametrically opposite points on the sphere. Such contours cannot be shrunk to a point,
however: when deformation occurs, the ends of the contour may move, but must remain at
the two ends of the some diameter of the sphere.

The Frank index is therefore not a topological invariant. Only its being integral or half-
integral has this property.

It follows from the above that all disclinations in a nematic medium fall into two
categories, each containing topologically equivalent disclinations which can be converted
into one another by a continuous deformation of the field n(r) (S. I. Anisimov and
I. E. Dzyaloshinskil 1972). One category includes disclinations with integral Frank indices,
which are topologically unstable and can be removed by a continuous deformation.
Disclinations with integral index may terminate within the nematic.

The other category consists of disclinations with half-integral indices. These discli-
nations are not removable and are topologically stable.

The question of which of the topologically equivalent structures will in fact occur under
any specified conditions depends on the relative thermodynamic favourability of these
structures and is therefore outside the range of a topological analysis.

There can be point singularities in a nematic medium, as well as the linear disclination
singularities. The simplest example is a point from which the vectors n radiate in all
directions (a “hedgehog™).

To determine the topological classification of point singularities, we again use the
mapping on a unit sphere as degeneracy space. In the physical space occupied by the
nematic, we take two points A and B joined by a contour y surrounding the singularity O
(Fig. 34). The contour y corresponds to a certain contour I" on the unit sphere, If now y is
rotated about the straight line 4B, it describes a closed surface ¢ in physical space during a
complete rotation back to its original position. The image X of g, described by I, covers
the unit sphere, possibly more than once. The number N of times it does so is a topological
characteristic of the singular point. It is possible to regard X as a closed film drawn over the
sphere, which evidently cannot, without cutting it in some way, be shrunk to a point; this

eO

FiG. 34

t A deformation of the contour may represent either a change in the contour y in physical space or a change in
the field n(r) itself.
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corresponds to the irremovability of the singularity. The value N =0 (incomplete
covering) corresponds-to an absent or removable singularity: a film that does not
completely cover the sphere can be shrunk to a point on the sphere. For singular pointsina
nematic, the sign of N has no significance; if the sign is changed, the directions of n are
simply reversed in all space, and this does not affect the state of the nematic.

The number N corresponding to a point singularity can only be integral. It is easy to see
that a half-integral N would in fact signify the presence of an irremovable line, not point,
singularity. If Z covers half the sphere (N = 1), this means that, if we follow any one point
on y, we find that its image describes a contour on the sphere like I'y in Fig. 33, which
would indicate the presence of an irremovable disclination with Frank index n = 4.t

In connection with this discussion of the topological properties of singularities in
nematics, let us briefly consider the topological interpretation of dislocations, i.e. line
singularities in crystal lattices. We take an infinite lattice with the x,, x,, x; axes along the
three basic lattice periods a,, a,, a;. The lattice energy is unchanged by parallel
displacements through any distances along the axes. The ranges of variation of the
degeneracy parameters (amounts of displacement) are segments with length a,, a,, a3, for
each of which the two end-points are regarded as equivalent, because a displacement by
one period leaves the lattice in the same position and therefore in identically the same state.
A segment with equivalent ends is topologically the same as a circle. Thus the degeneracy
space of the lattice is a three-dimensional region based on three circles. This region can be
regarded as a cube with pairs of opposite faces equivalent or, alternatively, as the three-
dimensional surface of a torus in four-dimensional space.i On such a torus there are
contours [" that cannot be shrunk to a point, each of which is described by three integral
topological invariants n,, n,, n;, the numbers of passages around the three circular
generators of the torus. If I is the image of a contour y which in physical space passes
round a singular line (a dislocation), then its three invariants are the three components of
the Burgers vector measured in units of the corresponding periods a,, a,, a;. Thus
dislocations are topologically stable irremovable singular lines, and their Burgers vectors
are topological invariants.

§41. Equations of motion of nematics

The state of a nematic medium in motion is defined by the spatial distribution of four
quantities: the director n, the mass density p, the velocity v, and the entropy density S.
Accordingly, the complete system of hydrodynamic equations of motion of a nematic
consists of four equations giving the time derivatives of these (J. L. Ericksen 1960, F. M.
Leslie 1966, T. C. Lubensky, P. C. Martin, J. Swift and P. S. Pershan 1971).

Let us begin with the equation for the director. If the nematic is in equilibrium, so that
h =0, and moves as a whole with a velocity constant in space, then this equation simply
expresses the fact that the values of nare transported in space at the same velocity. That is,
each liquid particle moyes in space with its own fixed n. This is expressed by equating to
zero the total or substantial time derivative:

dn _On

a—E+(V-V)n=0. (4L.1)

1 Acorresponding conclusion does not follow from similar arguments when N is integral, since a disclination
with integral index is removable, and the image with integral N corresponds to an irremovable singularity.

1 Just as a square with pairs of opposite sides equivalent is topologically the same as the two-dimensional
surface of a torus in three-dimensional space.
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In the general case of any motion, the right-hand side contains terms which depend on h
and on the space derivatives of the velocity; in the first non-vanishing hydrodynamic
approximation, we take just the terms linear in these quantities. The derivatives 0v;/0x,
form a tensor, which may be divided into symmetrical and antisymmetrical parts:

Vi = 3(0it + 0 0i), Qi = 3(iv — 0, v;). 41.2)

To determine the dependence on Q,, it is sufficient to note that, in uniform rotation of the
nematic as a whole with angular velocity Q, the entire field n(r) rotates with that velocity.
Such a rotation is represented by

dn/dt = jcurlvxn or dn/dt = Q;n,:

the velocity of points in a body rotating as a whole is v = QX r,and so curl v = 2Q, and the
rate of change of the director is given by a similar expression, dn/dt = Qxn. The terrs
depending on v, are subject to the condition n-dn/dt = 0, since n? = 1 is constant. We
thus arrive at the following general form of the equation of motion of the director:

dn;/dt = Q;in + A(dy — mim)n, vy + N, (41.3)
wheret
N = h/y. 41.4)

The term N represents the relaxation of the director towards equilibrium under the action
of the molecular field; the second term in (41.3) gives the orienting effect of the velocity
gradient on the director. The coefficients y, with the dimensions of viscosity, and 4,
dimensionless, in these terms are kinetic, not thermodynamic, coefficients. }

The equation for the time derivative of the liquid density is the continuity equation

dp/ot +div (pv) = 0. 41.5)

This essentially determines the hydrodynamic velocity as the material flux density per unit
mass.
The equation for the time derivative of the velocity is the dynamical equation

pdv/dt = F, (41.6)

where F is the force on unit volume. In accordance with the general arguments in §2, body
forces can be written as a tensor divergence:

F; = 0o,

where g, is the stress tensor. The dynamical equation then becomes

dv; Ov;
pa—p[a—z-i-(v V)v;]—@kaik. (41.7)
The form of the stress tensor will be established later.

Lastly, there is an equation for the entropy. In the absence of dissipative processes, the

motion of the liquid would be adiabatic, and would be so in each volume element, which

t The notation N is used to show more clearly the structure of some of the following formulae, and with a view
to further generalizations in §44.

! Theabsence of terms containing the gradients of density and entropy (or temperature) on the right of (41.3)
is due to the necessary invariance under spatial inversion and under a change in the sign of n. This is further
discussed in §44.
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would move with a constant entropy. The entropy conservation equation would be simply
the entropy continuity equation:

dS/ot +div (Sv) =0,

where S is the entropy per unit volume and Sv the entropy flux density. f When dissipative
processes are included, the entropy equation becomes

%g +div(Sv+q/T) = 2R/T. (41.8)
Here R is the dissipative function, and 2R/T gives} the rate of increase of entropy; it is a
quadratic form in the components of the tensor vy, the vector h, and the temperature
gradient vector V7. The vector q is the heat flux density, related to the thermal
conductivity. The components of this vector are linear functions of the temperature
gradient components:

qi = — K0, T. (41.9)

In a nematic medium, the thermal conductivity coefficient tensor k;, has two independent
components and may be put in the form

Kie = K mim+ K, (O — mimy), (41.10)

where x; and «x, describe the thermal conductivity in the directions longitudinal and
transverse relative to n.

The energy conservation law in hydrodynamics is expressed by

%(%pv2+E)+din =0, 41.11)
where E is the internal energy density and Q the energy flux density. The energy density is
E = Eo + E,, where E4(p, S) relates to the undeformed homogeneous medium and E; is
due to the distortion of the field n(r). According to the remark at the end of §37, E, is the
same as the free energy F, (37.1), except that the elastic moduli K, K ;, K ; are supposed to
be expressed in terms of the density and the entropy, not the temperature.

The energy conservation law is, of course, contained in the equations of motion. We
shall use it to establish the relation between the function R, the tensor o, and the vector N
defined above.

We expand the time derivative in (41.11), using the thermodynamic relations

(9E/3S),, =T, (9E/op)s,= m

t This equation can be put in the equivalent form

d 0
—(8/p) = — (S/p)+ (v*V)(S/p) = O,
de ot

which expresses the constancy of the entropy per unit mass transported by the liquid particles.
1 2R itself is, as in §34, the rate of dissipation of mechanical energy (FM, §79).
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where u is the chemical potential.t Then

P . o o _oS [OE
= (oo +E) = }vzap+pv '+ a’t’ T (azd) (41.12)

Let us consider separately the last term. With [1,; from (37.6), we write

OE, 0E;\ on, on,
( ot )pvs‘ <6n,» >‘,S g T Ml a—

0E, on; cn;
{an' aknh} ot a (nkl ot )

—h-0n/ot + 0, (I1,;0n;/01),

here we replace H by h, since the longitudinal part of H disappears at once by virtue of the
equation n-dn/dt = 0. Substituting dn/dt from (41.3), we write

OE, .
~ :(vkakni+Q,'knk—/J.Ul'knk)h,'~N'h+le(.. )
ot J,s

and, separating another total divergence,

JOE
<a—d> = —G-v—h¥y+div(...), (41.13)
ot ),
where
Gi = — hdim + 36, (nihy — nihi) — $40, (nihy + nhy). (41.14)

Here and henceforward, the total divergences are not written in full, so as to make the
formulae less complicated; these terms are not important in solving the problem stated,
though we shall return to them at the end of the section.

The expression (41.14) can be written as

G; = 0oy + (G Eq), s (41.15)
where
0" = — i — Y4(nhy + nihy) + 4 (nihy — nehy). (41.16)

The transformation makes use of the equation
(51 Ed)p.S = (5Ed/'5nk)6,nk + n,kﬁ,-@,nk.

The definition of the tensor g, is not unique: the expression (41.15) is unchanged if we
add to o,” any term d,x;x, Where y;, is any tensor antisymmetrical in the last pair of
suffixes (x,x = — xia)- Although the tensor (41.16) is not symmetrical, it can be made so by
adding a term of this form with an appropriate choice of the tensor y;,. The practical
execution of this quite laborious operation will be left till the end of the section. Here, we
will continue with the derivation of the equations of motion, assuming that ¢, has
already been symmetrized.

t Itshould be emphasized that E relates to a specified (unit) volume; the number N of particles (molecules) in
that volume is variable. In SP 1, the chemical potential is everywhere relative to one particle, i.e. is defined as u
= @dE/éN.Since N = p/m, where m is the mass of one molecule, the definition used here differs from that in SP1
only by a factor m. To avoid misunderstanding when comparing with the thermodynamic identity (3.2a), note
that E here is the internal energy per unit volume in the strict sense, whereas in §3 & was defined as the energy of
the matter in unit volume of the undeformed body.
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Substituting (41.15) in (41.13) and separating in one term a total divergence (using the
symmetry of ¢,), we gett

<(ZE4'> = —=N-h+0,"v, — (5;E), sv;+div(...) 41.17)
ot J,s
Lastly, substituting in (41.12) the time derivatives from (41.5), (41.7), (41.8) and (41.17),
and expressing the partial derivative (with p and S constant) of £ in terms of the total
derivative by
0,E = (0,E), s+ ndip + 70,8,

we find after some algebra (separating total divergences)
% (3pv*+E)= —a,'vae—N-h+(1/T)q-VT + 2R +div (. . .), (41.18)

where ¢, is related to o, by
g = —Pou+0u" +ou, (41.19)
and the pressure is thermodynamically defined:
p=pu—E+TS; (41.20)

ppu = O is the thermodynamic potential (Gibbs free energy) of unit volume of material and
determines, as it should, the isotropic part of the stress tensor.
Comparison of (41.18) with the energy conservation equation (41.10) shows that

2R = g,'va +N-h—(1/T)q-VT. (41.21)

This function determines the entropy increase due to dissipative processes. It is therefore
clear that the tensor o, in (41.19) is the dissipative (viscous) part of the stress tensor. The
tensor ;" does not appear in (41.21); it is the non-dissipative (additional to the pressure-
dependent) part of the stress tensor} and is specific to a nematic (as opposed to an
ordinary) liquid.

It should also be noted that the coefficient 4 does not appear in the dissipative function.
Although the effect represented by this dimensionless coefficient is clearly a transport and
not a thermodynamic effect, it is not dissipative.§

The density of body forces in a moving nematic medium is

Fi= -dp+004"+60u' = —0ip+F " +F/.

In a medium that is at rest in equilibrium (even if deformed), F' = 0, and according to the
equilibrium condition (37.7) h = 0 also. According to (41.14) and (41.15), in this case

F" = —(VE,) F=-Vp—(VEy),

PS>

If we assume the elastic moduli to be constants independent of p and S, then

t Since Eq = Eq(p, S), (CiEd)p.s = (GE),.s.
$ Sometimes called the reactive part, whence the superscript (r).

§ This situation is paralleled, for example, by the Hall effect in the electrodynamics of conductors, which is
likewise not accompanied by dissipation.
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(VE,),s=VE,, and F = —V(p+E,).T In equilibrium, we must also have F = 0. It
follows that (on the assumption stated) the pressure distribution in a nematic medium in
equilibrium is
b p = constant — E,. (41.22)
Let us now carry aut explicitly the above-mentioned operation of symmetrizing the
tensor o;". First, we calculate explicitly the antisymmetrical part of this tensor. To
calculate the difference ¢, — 5,;,'"’, we have to use the fact that

By = —n +I1;on — M 0in

is symmetrical in the suffixes i and k. It is not easy to verify this symmetry directly. A
simpler method is an indirect one using the fact that the energy E, is a scalar and therefore
invariant under any rotations of the coordinates. With an infinitesimal rotation through
an angle 8¢, the coordinates are transformed according to

r=r+dr, Jor=Jd¢pxr,
that is OX; = €4 Xx, Eix = €€ 0P, = —&.

The changes in the vector n and the tensor d;n; are correspondingly
on; =g my, O(0kn) = €qOyny+ i Oy

The invariance of E; under this rotation signifies that B¢, = 0. Since ¢, is any
antisymmetrical tensor, it follows that By, is symmetrical.
We can then easily bring the antisymmetrical part of the tensor ¢, to the form (2.11),

with by = n I —ny T,

The symmetrized tensor o, is then found immediately from (2.13). After some
simplification, the result is

04" = —3A(mhy + nihy) — $ (Mydim + 11, 0,m) —
—30,[ (M + M)m — Mgn; — M, 1. (41.23)

This actually involves only the transverse (relative to the subscript k) components of the
tensor IT;. If the latter is written as

M, = I, + Myneny,

so that I1,”n, = 0, only the IT," terms remain in (41.23).

Lastly, let us consider the total divergence terms, which so far have not been written out.
Comparison of (41.18) and (41.11) shows that the argument of div in all these terms
determines the energy flux density. The final result thus obtained is

Qi = (W+ o — Iy { — vidimi + Quiny + Any (v — Menpvim) }+
+ 3 (n hy — nhy) v + $A(nhy + nichi)og — 0 v — KO, T, (41.24)

where W = p+ E is the heat function. The first term is the same as the energy flux in
ordinary fluid dynamics.

t If these assumptions are not made, the force F at constant temperature can be writtenas F = — pVyu, and the
equilibrium condition thus reduces to the usual x4 = constant: by differentiating the expression (41.20) for the
pressure and using the thermodynamic relation dE = T'dS + udp + (dE,), s, we find —Vp = —pVu—-SVT
+(VE,),.s, whence, if T = constant, we get the above expression for F.
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§42. Dissipative coefficients of nematics

The N and o, terms in the equations of motion represent relaxation processes arising
from the departure of the medium from thermodynamic equilibrium, which causes h and
vy to have non-zero values. In the ordinary hydrodynamic approximation, the departure
from equilibrium is assumed to be weak; that is, h and v, are in some sense small. Then the
o’ are linear functions of them.

However, with the above form of the equations of motion, the terms in ¢;,’ that depend
on hneed not be written out. The reason is that such terms from the components of hand n
would have the form constant x (n;h, + n.h;). Such a term is already present in the non-
dissipative part of the stress tensor o, (41.18); the addition of a similar term in ;" would
therefore simply amount to redefining the coefficient 4.

The general form of the linear dependence of 6, on vy is

Gik’ = Niktm Vim - (42.1)
where the rank-four tensor ny,,, has the obvious symmetry properties (resulting from the
symmetry of oy’ and vu) Nikim = Nkitm = Nikmi - (42.2)

This tensor also has a deeper symmetry which results from Onsager’s general
principle of the symmetry of the kinetic coefficients (see SP 1, §120; as in §33, in the rest of
this section we shall formulate this principle as in FM, §59, and use x, and X, as defined
there). The expression R /T for the rate of increase of entropy shows that, if the x, are taken
to be the components of the tensor g;,, then the X, thermodynamically conjugate to them
are the components of the tensor —v,,,/7.1 The components of the tensor n,,, act as the
kinetic coefficients y,,. Onsager’s principle requires that y,, = y,,, i..

Niktm = Mimik - (42.3)
The tensor 1, has to be constructed from only the unit tensor J; and the vector n,
taking account of the symmetry properties mentioned. There are only five linearly
independent combinations of this kind:
Ry My Oy + N0
Ny Oy + My B + Nily Oy + MMy Oy
O Oim>  Oit Oxm + Ot Oim -

Accordingly, n,,, has five independent components; the stress tensor formed from it may
be written asf

o’ = 2+ (12 — My ) S u + (Ma + 1y — 12) (Bix My My Uy + M0y ) +
424
+ (13 = 2m1) (i + memvy) + (1s + 1y + 12 — 213 — 2n4) RimanLL,, . )

The suitability of this definition of the various coefficients is seen from the following
expression for the dissipative function when the z-axis is taken parallel to n:

2R = 2’71 (vaﬂ - %5111”\/):)2 + ’72”«12 + 2"3”(122 +

1
+ 2”4 Uzz Usa + Ns vzz2 + ?{K”(az T)2 + KL(aa T)Z} + hz/"/, (425)

t Intheliterature, the %,and X, are often called thermodynamic fluxes and thermodynamic forces respectively.

b Thc dissipative coefficients of nematics were introduced (in a different form) by F. M. Leslie (1966) and O.
Parodi (1970). The choice of definitions of the viscosity coefficients of nematics seems to be not yet agreed upon in
the literature.
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where the suffixes, a, 5, y take the values x and y. Since we must have R > 0 (the entropy
increasing), the coefficients n,, n,, 13, s, K, &, and y are positive, and

NaMs > Na’. (42.6)

A nematic medium thus has a total of nine kinetic coefficients: five viscosity coefficients,
two thermal conductivities, the coefficient y (which also has the dimensions of viscosity),
and the non-dissipative dimensionless coefficient A.

The number of viscosity coefficients which appear in the equations of motion is smaller
in the important case where the fluid in motion may be regarded as incompressible; for
this, its velocity must be much less than that of sound. The equation of continuity for an
incompressible fluid is just div v = v, = 0. The second term in the stress tensor (42.4)
disappears, and the third becomes constant x é; (nn,v,,). The latter term makes no
contribution to the dissipative function, since it gives zero in the product ¢, v;, because of
the resulting factor v, d; = v = 0; it has the same tensor structure as — pd;, in the
complete stress tensor g;. On the other hand, in incompressible fluid dynamics the
pressure appears (like the velocity) as just one of the unknown functions of coordinates
and time, determined by solving the equations of motion; it is here not a thermodynamic
quantity related to other similar ones by the equation of state. The terms — pd; and
constant x é;,(mn,,v,,)in the stress tensor can therefore be combined; this simply amounts
to redefining the pressure. The viscous stress tensor for an incompressible nematic fluid
therefore reduces to

oy’ = 20,04+ (M3 — 20y ) (minow + menog) + (17 + 1y — 2n3) ninyng oy, (42.7)

where n, = 1, + ns — 2n,; it contains only three independent viscosity coefficients. The
corresponding dissipative function is (with the z-axis along n)

2R = 2']1 (UaB —%5aﬂ Uyy)z + ﬁlvzzz + 2"3‘)&:2 +
l 2 2 2
+T{K‘(azr) +KL(aaT) }+h /}’, (428)

since v,, + v,, = 0; the inequality (42.6) makes the coefficient 5, positive.

PROBLEM

Determine the force on a straight disclination (with Frank index n = 1) moving transverse to itself (H. Imura
and K. Okano 1973).

SOLUTION. Let us consider the disclination in coordinates for which it is at rest and along the z-axis, while the
liquid moves at a constant speed v in the x-direction. The distribution n(r) in the disclination in these coordinates
is steady, and is given (for a disclination with radial director streamlines, Fig. 29a) by

n, =cos¢, n,=sing,

where the polar angle ¢ =tan"' (y/x). In equation (41.3), we have dn/dt = 0 and v, = 0 (the flow being
uniform), leaving
vdn/ox = h/y.

This gives for the weak molecular field resulting from the motion
h=yvvxndep/ox,

where v is a unit vector in the z-direction; in the absence of motion, h = 0, since a disclination at rest is an
equilibrium state of the medium. The dissipative function is

2R = h?Jy = y*(8¢/0x)* = yo?y?/(x? +y?)’.
The energy dissipated per unit time and per unit length of the disclination is répresented by the integral

JZR dxdy = nyv?L, L =log(R/a),

where R is the transverse dimension of the region of motion and a the molecular dimensions. This dissipation
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must be compensated by the work vf done by the force f acting on the disclination. Hence
f=nyvlL.

A similar result is obtained for a disclination with circular streamlines (Fig. 29b).

§43. Propagation of small oscillations in nematics

The complete system of exact equations for the hydrodynamics of nematics is very
complicated, but it is simpler for small oscillations, where the equations can be linearized.

In considering the propagation of small oscillations in nematic media, let us first recall
the oscillation types (modes) that exist in ordinary liquids. Firstly, there are ordinary
sound waves, for which the dispersion relation between the frequency w and the wave
vector k is w = ck and the propagation speed is

c = \/(3p/dp),. (43.1)

The oscillations in a sound wave are longitudinal (see FM, §64).
Next, there are strongly damped viscous waves, with dispersion relation

iw = nk?/p, 43.2)

where n is the viscosity coefficient (see FM, §24). These waves are transverse (the velocity v
is perpendicular to k), and are therefore often called shear waves. They can have two
independent directions of polarization; the dispersion relation does not depend on these.

Lastly, in a liquid at rest, small oscillations of temperature (and entropy) are propagated
as waves, likewise strongly damped, with dispersion relation

iw = rk?, (43.3)

where y is the thermometric conductivity of the medium (see FM, §52).

Analogous types of wave exist in nematic media, but the presence of an additional
dynamical variable, the director n, gives rise to further types peculiar to these media.

Let us begin with ordinary sound in nematics. It is easy to see that, in the limit of
sufficiently long waves (i.e. sufficiently small k), the corrections to the speed of sound that
are due to the presence of the additional dynamical variable are slight, so that the speed of
sound is again given by the simple formula (43.1). We can write the director in the
oscillating medium as n = ng +6n, where no is the unperturbed value, constant
throughout the medium, and dn is a small variable part; since n2 = ng2 = 1, ny-6n = 0.
Comparison of the left-hand side of (41.3) with the first two terms on the right shows that
wdn ~ kv, or n ~ v/c; the term N = h/y is a higher-order small quantity, since by (37.9)
the molecular field h oc k2. The term E, in the energy density of the liquid is therefore

Eq4~ K(kén): ~ K (kv/c)?,

ie. is of the order of k? relative to the leading term ~ pv2. In the approximation
considered, this energy may therefore be neglected, and this proves the above statement
regarding the speed of sound.

In the next approximation with respect to k, there is absorption of sound arising from
dissipative processes. The specific feature of a nematic, as compared with an ordinary
liquid, is that this absorption is anisotropic, depending on the direction of propagation of
the sound wave; see Problem 1.

The remaining types of oscillation in nematics have a dispersion relation similar to
(43.2) and (43.3): w o k?. This means that, for sufficiently small k, we always have v < ck.
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In turn, it follows that in such oscillations the fluid may be regarded as incompressible.t
The continuity equation then reduces to div v = 0 or, for a plane wave, k-v = 0. The
oscillations considered are therefore transverse shear oscillations relative to the velocity
oscillations.

To investigate these various oscillations, we linearize the equations of motion, putting
n = no+0n, p = py + dp. In the first approximation, the molecular field is linear in the
derivatives of n, and therefore linear in dn:

H = K, Vdivdn— K, curl [no (ng - curl on)] + K3 curl [ny X (ny X curlén)] . (43.4)

The first term in the “reactive” part of the stress tensor (41.16) is quadratic in én and is
therefore to be omitted. We have also to omit the quadratic terms which arise in taking the
tensor divergence d,0;"" in (41.7) and (v-V)v on the left-hand side. This equation thus
becomes

pov; [0t = —0;8p +}(no; Oy b — no Ok hi) — 5 A (no; Oxhi + noy O hy) + O aix . (43.5)

In (41.3), it is sufficient to replace n by ny in the first two terms on the right and omit
(v-V)én on the left:

00n;/0t = Qi nox + A(y — noinor) Nox vy + hify. (43.6)

Because ny-on =0 and v-k =0, the vectors dn and v have only two independent
components each. The equations (43.5) and (43.6) thus form a set of four linear equations.
They define four oscillation modes, in each of which the velocity and the director undergo
coupled oscillations. Usually, however, the situation is considerably simplified by the fact
that the dimensionless ratio

u=Kp/n? 43.7)

issmall, ~ 10”2 — 10~ %; here K and 5 denote the order of magnitude of the elastic moduli
of the nematic and its viscosity coefficients, #,, ,, 13, y. It will be shown below that we can
then distinguish two substantially different types of oscillation, for each of which (43.5)
and (43.6) allow certain simplifications.

In one type, the frequency is related to the wave number by

i ~nk?/p, (43.8)

which is similar to (43.2); for a reason to be explained below, these are called fast shear
oscillations. In both equations (43.5) and (43.6), we can then neglect all terms containing h:

it is seen from (43.8) that on ~ kvjeo ~ pujnk,

and so the molecular field is
h~Kk*én~ pokK/n.

Using these estimates, we can readily verify that the terms in h in the equations are small in
comparison with those in v, , their ratio being ~ u. The equations of fast shear oscillations

thus reduce to pdv;/0t = 3, 0u’ — 0, 0P, (43.9)
06n;/t = Qi nox + A8y — Noi Nor) Nok Vi - (43.10)

The first equation does not involve dn, and determines the velocity oscillations and the
dispersion relation, after which the second equation immediately gives the accompanying
oscillations of the director (see Problem 2).

t It may be recalled (see FM, §10) that a fluid in non-steady motion may be regarded as incompressiblcjfv <c
and t » l/c, where t and | are the times and distances over which the velocity changes appreciably. For oscillatory
motion, the first condition is always satisfied at sufficiently low oscillation amplitudes. while the second implies
that w/k < ¢.
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Let us now turn to the second type of shear oscillations with the condition u < 1, the
slow director oscillations that are specific to nematics. In these, the order of magnitude of
the alternating part of the director is determined by the balance between the derivative
00n/dt on the left of (43.6) and the term h/y on the right: wén ~ h/y,and, since h ~ K k? én,
the dispersion relation for these oscillations is qualitatively

i~ Kk/y. (43.11)

Evidently, the derivative pdv/dt ~ pvw on the left of (43.5) is then small compared with the
terms 0,0, ~ nuk? on the right, and may therefore be omitted. The equation

—0;0p + % (no; O hi — oy 04 hy) — 3 A(now B by + noy B hy) + ooy’ =0 (43.12)

gives the relation between the velocity and director oscillations, and the dispersion relation
.5 then found from (43.6); see Problem 3.

Note that the ratio of the frequencies (43.11) and (43.8)is w,/w, ~ p. Thus, for a given k,
w; is much less than w/, and this is the reason for calling the oscillations slow and fast
respectively.

Lastly, the temperature oscillations in a nematic medium at rest differ from the
corresponding ones in an ordinary liquid only by the anisotropy in the dispersion relation,
which is similar to (43.3); see Problem 4.

PROBLEMS
ProBLEM 1. Determine the absorption coefficient of sound in a nematic medium.

SoLuTION. The absorption coefficientt is calculated as the ratio
r= R/Cpl?

(see §35); the dissipative function is given by (42.5), in which the term h?/y may be omitted: as already mentioned,
the molecular field h oc k2, and therefore h?/y o k*, whereas the other terms in R are proportional to k?, a lower
power of the wave number. A simple calculation gives}
2
r= 290 {(m +12) + 2013 +1g =Ny —02)€0820 + () + ny + 15 — 203 — 2na) cos*6 +

+[x | +(x)— K )cos’d] <l—l)},

v CP
where 6 is the angle between k (and therefore v) and n. The calculation of the thermal-conduction part of the

absorption is entirely analogous to the similar one for an ordinary liquid (FM, §79); ¢, and ¢, are the specific
heats per unit mass of material.

ProsLEM 2. Find the dispersion relation for fast shear oscillations.
SoLuTioN. For a plane wave, with va exp (ik - r — iwt), (43.9) becomes
—ipwr; = —ikdp+ ik, .
For an incompressible nematic, the viscous stress tensor is given by (42.7), and a simple calculation (using the fact
that v is transverse, v-k = 0) brings the equation to the form$

ipwv = ikdp + a k*v+a  kin(n-v) + askk(n - v), (1)
where
ay = 1y +4(ny = 2n,)cos?6,
a; = $(n3 = 2ny) + iy + 0y — 2n3)cos?6,
ay = $(n, — 2ny)cos b,
t Here we denote this quantity by I to avoid confusion with the dissipative coefficient y.
! In calculating the quadratic terms, all oscillatory quantities must of course be written as real, their

dependence on r and r being given by factors cos (k -r — wt).
§ To simplify the formulae, the suffix 0 is omitted from n, in the remainder of the Problems.
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with ¢ the angle between k and n. Multiplying (1) by k, we get an expression for the pressure oscillations in terms
of the velocity oscillations:
op = ik(n-v) (as +a, cos0). 2)
The required dispersion relation is given by the transverse components of (1). Multiplying this by nxk, we get
iw, =k¥a, (0)/p
= k2(n, sin?0 + 4n;cos?0)/p,

corresponding to oscillations of v at right angles to the plane through k and n. The dispersion relation for
oscillations polarized in this plane is found by multiplying (1) by n and eliminating dp by means of (2):

w = k*{a,(0) +sin’0a,(0)}/p
= k*{%(n, +1i,)sin?20 + in,cos? 20}/p,
where n, is as in (42.7).

Both dispersion relations agree, of course, with the qualitative estimate (43.8).

ProBLEM 3. Find the dispersion relation for slow shear oscillations.
SoLuTION. For a plane wave, dn o« exp (ik - r — iwt), the linearized molecular field is
h=H-n(n-H)
= —K;{k-n(n-k)}k-on—K,v(v-6n)— K, (k-n)? on,
where v = nxk and v? = k?sin?0. Equation (43.12), with o,; from (42.7), becomes
—ikdp —a, k*v —a,k*n(n-v) —akk(n-v) +
+4i(1 — A)n(h-k) —4i(1 + A)h(n-k) = 0; (1)

the functions a, (9) and a,(6) have been found in Problem 2. Multiplying this by v, we find the relation between
the oscillations of v and én polarized perpendicularly to.the plane of k and n:

+A(n~k)(h'v)=%i(l4—/',)(n-k)Kle-¢5n), (2)

R
a;(v-v) = —471‘7

where
K, = K,sin?0 + K; cos?6.
Equation (43.6) multiplied by v is
~iw(v-on) = 4i(1 + A) (n-Kk) (v-v) —k*K | (v-on)/y.
Eliminating (v - v) by means of (2), we find the dispersion relation for oscillations polarized perpendicularly to the
plane of k and n:
. { l
w, =k*K -

7 4a,

(1 +).)2coszo}
-

To find the dispersion relation for oscillations polarized in the plane of k and n, we take the component of (1) in
the direction perpendicular to k in that plane, and multiply by n, obtaining

(n-v) (@, +a,sin?8) = —}i(l + 2cos20)K (k-on),
where
K = K;sin?8+ K,cos0.

Similar operations on (43.6) give
iw(k-on) = $ik?(1 + Acos20) (n-v) + k2K (k-dn)/.
Elimination of n-v from these two equations gives the dispersion relation
1 1 + 4cos 20)*
iw. = k2K {-+ Liic»of_—l’—}.
' “ly  4(a, +a,sin’Y)

Both relations are in agreement with the qualitative estimate (43.11).

ProsLEM 4. Find the dispersion relation for temperature oscillations in a nematic at rest.

t When k is real, the real quantity iw must be positive, and the oscillations are damped in tht_: course of time,
not spontaneously amplified. All the dispersion relations found in Problems 2 and 3 have this property.
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SoruTioN. The transformation of (41.8) for an incompressible nematic is made in exactly the same way as for
an ordinary liquid (see FM, §50), and the result is

OT/dt = x4 0,6, T,
Xik = Kix/PCp = Yyt + X L (B — mimy),
with «,, from (41.10). For oscillations with 6T« exp (ik -r —iwt), we find the dispersion relation

iw = k*(x, cos?6 + x| sin*6).

§44. Mechanics of cholesterics

Cholesteric liquid crystals or cholesterics differ from nematics in that there is no centre of
inversion among their symmetry elements. The directions nand — n of the director remain
equivalent; see SP 1, §140.

The absence of a centre of symmetry has the result that the free energy of a deformation
may contain a term linear in the derivatives—the pseudoscalar n - curl n. The general form
of the free energy may be written as

F, = 1K, (diva)2 +1K, (n-curl n + ¢)* + 1 K3 (nxcurl n)?, (44.1)

where ¢ is a parameter having the dimensions of reciprocal length. This difference causes a
fundamental change in the nature of the equilibrium state of the medium (in the absence of
external interactions): it is no longer uniform in space (n = constant) as in nematics.

The equilibrium state of a cholesteric corresponds to a distribution of directions of n for
which

divn=0, n-curln= —¢q, nxcurln = 0; (44.2)
the free energy (44.1) then has its minimum value of zero. The solution of these equations is
n,=cosqz, n,=sinqz, n, =0. (44.3)

This helicoidal structure can be regarded as the result of twisting about the z-axis a nematic
medium originally oriented with n = constant in one direction in the xy-plane. The
orientational symmetry of a cholesteric is periodic in one direction in space (the z-axis).
The vector nreturns to its previous value after every interval 2n/q in the z-direction; since n
and — n have equivalent directions, however, the true period of repetition of the structure
is half this, or n/q. Of course, the macroscopic description of the helicoidal structure of a
cholesteric by the equations (44.3) is meaningful only if the pitch of the structure is much
greater than molecular dimensions. In actual cholesterics this condition is satisfied
(m/q ~ 10”3cm).

In deriving the equations of equilibrium and motion of nematics, no use was made of
their possession of a centre of inversion. The same general equations are therefore valid for
cholesterics. There are, however, a number of differences. First, there is a change in the
expression for F, with which the molecular field h is to be calculated from the definition
(37.5). Next, the presence of a term in the free energy that is linear in the derivatives causes
a difference between the isothermal and adiabatic values of K ,; cf. the end of §37. In the
hydrodynamic equations as formulated in §§41 and 42, the basic thermodynamic
variables are the density and entropy. Accordingly, the adiabatic elastic moduli (as
functions of p and S) are to be used.

Lastly, there is a substantial change in the hydrodynamic equations of cholesterics, as
compared with those for nematics, in that further terms appear in the dissipative parts of
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the equations, namely i_n the stress tensor o;,’, the heat flux q, and the quantity N on the
right of (41.3) (F. M. Leslie 1968):

i = (0ik)pem + 1 (Ni€km + N Citm MmO, T,

N‘- = (N,) + Ve,‘“nkal T, (444)

nem
4t = (@) nem T Vi€wiMhi + 11 (Emii + €1k NN Vit

the terms with the suffix nem denote the expressions given by the hydrodynamics of
nematics. The additional terms in these relations are a pseudotensor and pseudovectors,
not a true tensor and vectors. This removes the symmetry under spatial inversion, and for
that reason the terms do not appear in nematic hydrodynamics. Note that the construction
of similar terms that are true tensors or vectors is not possible, owing to the requirement
that the equations are invariant under a change in the sign of n. For example, a term in g4
having the form constant x (n;6, T+ n,6;T) or a term in q having the form constant x h
would change sign with n, whereas the stress tensor and the heat flux must be invariant
under this transformation. Similarly, a term constant x VT in N is impossible, since it is
invariant under a change in the sign of n, whereas N (which determines the derivative
dn/dt) would have to change sign.

The coefficients in (44.4) are connected by relations which follow from Onsager’s
principle. In applying this principle (cf. §42), we choose as the x, (the thermodynamic
fluxes) the quantities g/, q; and N;. The form of the dissipative function (41.21), or more
precisely that of 2R/T, which determines the increase of entropy, shows that the
corresponding thermodynamic forces X, are the quantities — vy /T, 0, T/T* and —h;/T. It
must also be noted that the ¢;," are even and the g; and N; odd under time reversal, as is seen
from their positions in (41.3), (41.7) and (41.8). If the x, and x, have the same parity under
this transformation, then the corresponding kinetic coefficients are related by y,, = y,,; if
they have opposite parities, then y,, = —y,,. Now, comparing the cross coefficients in
(44.4),1 we find

vy =vT, pu, = ul.
We can thus write (44.4) in the final form
G’ = (O )pem — [N (MXVT) + n, (nXVT);],
N =N__ +vwxVT7, (44.5)

nem

q = q,.,+vInxh+2uTnx(vn),

where (vn) denotes the vector with components vy n,.

In the mechanics of cholesterics, there is thus a dependence of the stress tensor and the
vector N on the temperature gradient.i The form of this dependence (the vector product
nxVT)signifies that the temperature gradient gives rise to twisting moments acting on the
director and on the mass of the liquid. The molecular field which accompanies a rotation
of the director relative to the liquid, and the liquid velocity gradients, cause heat fluxes.

t+ When comparing, note carefully the order of suffixes in the factor e,,.

1 The presence of terms containing the gradient of a second independent thermodynamic quantity, such as the
pressure, among the dissipative terms in the equations of motion is forbidden (F M, §49) by the law of increase of
entropy. The presence of such terms would lead to terms in the dissipative function which contain the products
Vp-VT and h-Vp, and these, in the absence of terms containing (Vp)?, would make it impossible for R to be
positive definite.
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One hydrodynamic effect peculiar to cholesterics may be illustratively described as the
percolation of a liquid through a helicoidal structure at rest (W. Helfrich 1972). It is as
follows.

Let us imagine a cholesteric medium whose helicoidal structure is fixed in space, for
example by some form of adhesion to the boundary walls of the medium. We shall show
that there can then exist a uniform flow of the liquid along the axis of the structure (the z-
axis).

Since the structure (44.3) corresponds to the equilibrium state of the medium, it makes
the molecular field zero: h = 0. The presence of the percolating flux causes some distortion
of the structure and accordingly a small molecular field (together with the flow velocity v).
This field can be determined from the equation of motion (41.3) of the director. Since the
field n(r) is at rest in the zero-order approximation with respect to the velocity, on/dt = 0,
and, since the liquid flow is assumed uniform (v, = v = constant), v, = Q; = 0. The
equation thus becomes

(v. V)n = vdn/dz = h/y.
With n(z) from (44.3), we then find
h = yvqXxn, (44.6)

where the vector q, with magnitude ¢, is in the z-direction. Under the conditions
considered, the expression (41.21) for the dissipative function becomes 2R = h?/y and,
with h from (44.6),

2R = yv?q’. (44.7)

This gives the energy dissipated per unit time and per unit volume of the liquid. In steady
motion, it is balanced by the work done by the external sources that maintain the pressure
gradient p’ = dp/dz acting along the z-axis. The body force density in the medium is given
by just the gradient — Vp; the work done by these forces per unit time and per unit volume
iIs —p'v, and on equating this to 2R, we find the percolation velocity

v=p"l/vq* (44.8)

The director n rotates with angular velocity vq relative to a liquid particle percolating
through the helicoidal structure. This rotation is accompanied by “friction” described by
the coeflicient y, which determines the velocity of the flow.

Under actual conditions, the velocity cannot be constant over the whole width of the
flow: it must be zero at the walls of the containing tube. The velocity decreases in a layer
having a thickness . Now the only parameter of length for the motion in question is 1/q. If
we suppose that all the viscosity coefficients of a cholesteric are of the same order of
magnitude, there are also no dimensionless parameters other than ~ 1. Under these
conditions, evidently only § ~ 1/q is possible. Thus, for flow in a tube whose radius is
much greater than 1/q, (44.8) is valid everywhere except in a very thin layer at the wall, with
thickness of the order of the pitch of the helicoidal structure.

§45. Elastic properties of smectics

According to the accepted terminology, smectic liquid crystals or smectics comprise
anisotrop.: liquids with various layer structures. At least some of these have a microscopic
molecular density function that depends on only one coordinate (z, say) and is periodic in
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that coordinate: p = p(z). It may be recalled (see SP 1, §128) that the density function
determines the probability distribution of various positions of particles in the body; in this
case, such positions can be treated as a whole, that is, p d}'is the probability for the centre
of mass of an individual molecule to be in the volume d V. A body with density function
p(z) may be regarded as consisting of equidistant plane layers with free relative movement.
In each layer, the molecular centres of mass are arranged randomly, and in this sense each
is a two-dimensional liquid, but the liquid layers may be either isotropic or not. This
difference may be due to the nature of the ordered orientation of molecules in the layers. In
the simplest case, the anisotropy of the orientation distribution is specified only by the
direction of n, say the direction of the longest axis of the molecule. If this direction is at
right angles to the plane of the layers, then the latter are isotropic, so that the z-axis is an
axis of symmetry in the body; this appears to be the structure of what are called
smectics A. If the direction of n is oblique to the xy-plane, that plane contains a preferred
direction, and there is no axial symmetry; this appears to be the structure of what are called
smectics C.

In the following, we shall discuss only the simpler smectics A, and call them just
“smectics”. In all known smectics A, as well as the axial symmetry about the z-axis, there is
equivalence of the two directions of the z-axis. If the smectic has also a centre of inversion,
its macroscopic symmetry (the point symmetry group) is the same as in nematics; the
microscopic symmetry, and therefore the mechanical properties, are of course quite
different.

There is a very important reservation concerning what has been said so far. The
existence of a structure in which the density varies within the body presupposes that the
displacements caused in small regions of the body by the thermal fluctuations are
sufficiently small. However, for a structure with p = p(z) these fluctuational displacements
increase without limit as the body becomes larger; see SP 1, §137. Strictly speaking, this
means that there cannot exist a one-dimensional periodic structure in an infinite medium.
In practice, however, this statement has only a highly conventional significance, because
the fluctuations increase only slowly (logarithmically) as the body becomes larger.
Estimates using typical values for the material constants show that the one-dimensional
periodic structure could be lost only for enormous sizes impossible in practice, and so the
p(2) structure is feasible in any realistic problem.

It should be emphasized, at the same time, that the medium does not become an
ordinary liquid when the p(z) structure is disturbed by fluctuations and p = constant. The
fundamental difference from a liquid lies in the properties of the density fluctuation
correlation function between different points, {(dp(r;) dp(r,) ). In an ordinary liquid, this
function is isotropic, and decreases exponentiallyasr = |r, —r,;| - 0;see SP1,§116.Ina
system with p = p(z), the correlation function remains anisotropic, and as r — o« it
decreases only slowly, as a power function, and more slowly as the temperature falls; see
SP1, §138.

In going on to construct a mechanics of smectics, we have to begin by finding an
expression for the deformation free energy density. Because of the microscopic
homogeneity of the medium in the xy-plane, the displacements of its points in that plane
are related to the change in energy only in so far as they change the density of the
substance. We therefore choose as the fundamental hydrodynamic variables (in addition
to the temperature, which is assumed constant throughout the medium) the density p and
the displacement u, = u of the points in the medium along the z-axis. The deformation
energy depends on the density change p — p, (Where pq is the density of the undeformed
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medium) and on the derivatives of the displacement u with respect to the coordinates. The
first derivatives du/0x, du/dy cannot occur in the second-order terms in the free energy: if
the body is rotated rigidly about the x or y axis, these derivatives change, whereas the
energy must obviously remain constant.}

As always in elasticity, the spatial variation of all quantities will be assumed to be
sufticiently slow, so that the deformation energy is determined by the first non-vanishing
terms in the expansion in powers of the spatial derivatives. We shall also, however, assume
an even stronger condition: the displacements u themselves are so small that the layers
everywhere remain almost parallel to the same xy-plane.}

Under these assumptions, and using the symmetry of the medium, we find for the free
energy of the deformation of the smectic

Fy=F—Fo(T)
= 3(A4/po) (p = po)* + C(p — po)0u/0z + } Bpo (9u/02)* + $ Ky (A Lu)?, (45.1)
A = jax? +9?)dy?.

A term§ (du/0z)/A | uis prohibited by the assumed equivalence of the two directions of the
z-axis, i.e. by the symmetry under the transformation u —» —u, z— —z, x, y > x, y
(reflection in the xy-plane) or u— —u, z—+ —z, y—» —y, x — x (rotation about the
horizontal second-order axis, the x-axis); for the same reason, there is no term (p
- po) A\ u. Including the first term of the expansion in second derivatives (which does not
appear in the elasticity theory for solids) is necessary since F, does not contain first
derivatives with respect to x and y. The stability conditions for the undeformed state, i.e.
the conditions for the energy (45.1) to be positive, are

A>0, B>0, AB>C2 (45.2)

The use of the notation K, in (45.1), as in (37.1), is deliberate. A deformation of a layer
structure of smectics can be described by a distribution n(r) of the director, regarded as the
normal to the deformed layers specified by the equations u(r) = constant. For a small
distortion of the layers,

n,=du/ox, n,x=dcu/dy, n, =1, (45.3)

and then (A [ u)? = (divn)?, which is just the quantity in the corresponding term in (37.1).
The coefficients B and C in (45.1), however, characterize the specific crystal nature of
smectics which distinguishes them from nematics.9

* These derivatives occur in the elastic energy of solids in combinations of u,, and u,, with the derivatives of u,
and u,, which are unaffected by the rotation mentioned.

1 Inthissense, the range of application of the mechanics of smectics as developed here is narrower than for the
nematic mechanics considered previously, which allowed director fields n(r) differing to any extent from the
undeformed uniform distribution.

& Such as occurred in SP 1, §137.

€ The director n (regarded as the preferred direction of orientation of the molecules in the layers) is not an
independent hydrodynamic variable in smectics A. With a variable nin nematic hydrodynamics it is characteristic
that a uniform rotation of n(r) throughout the body causes no change in the energy. It is for this reason that a
slow change in n through the body involves only a small change in the energy, which depends only on the
derivatives of n and can be expanded in powers of these. In smectics, however, such a rotation alters the
orientation relative to the layer structure and would change the energy considerably. In smectics C, where the
director is at some definite angle to the normal, a uniform rotation of n about the normals at a constant
inclination would again not affect the energy. This provides another hydrodynamic variable, namely the
component of n in the plane of the layers.
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In the approximation (45.3), n-curl n = curl, n = 0. The term n-curl n thus does not
occur in the free energy of smectics, nor therefore does the cholesteric distortion of the
structure (§44), whether or not the symmetry elements include a centre of inversion.

The equations of equilibrium of a smectic are found by minimizing the total free energy
with respect to the variables p and u, with the added condition [pdV = constant,
expressing the constancy of the total mass of the body. Minimizing the difference

J.F,,dV—lJ.pdV

(where A is a constant Lagrange multiplier) with respect to p, we find
A(p —po)/po+Cou/oz = A,
relating the density change to the deformation of the layers. Taking p, to be the density
when 0u/dz = 0, we have A = 0 and
p—Po = —pomiu/dz, m = Cpy/A. (45.4)

The dimensionless coefficient m is related to Poisson’s ratio ¢ for a rod cut from the

smectic in the z-direction. For
(P_Po)/Po = _( V— VO)/VO = _(uxx+uyy+u:z)

(see (1.6)), where u,, = du/dzand u,,, u,, are the strain tensor components in the xy-plane.
Putting u,, = u,,, we have
Ugx = —%(l —m)uzz’

and comparison with (5.4) shows that
g=4(1-m). (45.5)

When m = 0, ¢ = 4, the value for a liquid.
Eliminating the density change from (45.1) and (45.4) gives the free energy in terms of u
only:
F,=4poB'(0u/dz) + 1K (A L u)?, (45.6)
where
B' = B—-C?*/A. (45.7)

Variation of the total free energy with respect to u now gives, after some integrations by
parts,

6dedV - — JF,éudV, (45.8)
where
, = poB'0%u/0z? — K, A u. (45.9)

Evidently F, is the force per unit volume acting in the z-direction in the deformed smectic if
the density change is not “adjusted” to the deformation.
In equilibrium, F, = 0, and the displacement u satisfies the linear differential equation

poB'd%u/z? — K, *u=0. (45.10)

If the body is also subjected to externally applied body forces, these must be included on
the left-hand side; cf. (2.8).
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The ratio \/(K,/poB‘) has the dimensions of length, and a rough estimate of it is
\/( K,/poB’') ~ a, where a is the period of the one-dimensional structure, i.e. the distance
between layers. If the smectic is subjected to a deformation that varies considerably in the
xy-plane over distances ~ /| > a, then it follows from (45.10) that in the z-direction the
deformation varies considerably only over distances /| ~ [ 2a>1,.

As an example, let us find the Green’s function for (45.10), i.e. the displacement
u = G,,(r) = G(r) at a variable point r due to a single concentrated force applied at r = 0
and acting in the z-direction; cf. §8, Problem. This function satisfies the equation

poB32G/oz2 — K,/ [2G +d(r) = 0. (45.11)
Taking the Fourier transform of this equation (i.e. multiplying it by e =%

over d3x), we find for the Fourier components of G(r)

Gy = [poB'k,> + K,k *]7!,

and integrating

where k2 = k,? + k,?. The inverse Fourier transformation gives the function sought, as

the integral
e—ik-r d3k
G(r)= . 45.12
" JpoBlkzl + Kk *(2n)’ ( )

This integral is logarithmically divergent as k — 0. To give it a definite significance, we
have to eliminate the motion of the body as a whole, assuming some arbitrarily chosen
point r = r, in the body to be fixed; the numerator of the integrand then becomes
e'r— ek and the divergence is eliminated.

Let us now return to the influence of thermal fluctuations on the properties of smectics,
and consider their elastic properties. The problem can be formulated most definitely as
follows: how do the fluctuations affect the deformation due to a concentrated force
applied to the body, i.e., how does the Green’s function G(r) vary? It is found that the
change is given by replacing k,” and k,* in (45.12) by k,[log(1/ak;)] ** and
k *[log(1/ak ;)]*"* respectively, a being of the order of the structure period.t In turn, this
change can be intuitively interpreted as a change in the effective values of the elastic moduli
B’ and K, when the characteristic wave number of the deformation decreases, and so its
extent (~ 1/k) increases. We see that B’ decreases as [log (1/ak,)]™*"® when k. — 0, and
Ky increases as [log (1/ak [ )]* ® when k, — 0. In practice, however, such effects could
become significant only for unrealistically large dimensions.

To conclude this section, we shall show that the expression (45.6) for the elastic energy
of a smectic can be somewhat generalized by including some higher-order terms, though
without bringing in further coefficients.

To do so, we note that the energy contribution given by the first term in (45.6) is
physically due to the change in the distance a between the layers; the derivative ¢u/(z is
equal to the relative change in this distance under a displacement u, = u, and the term may
therefore be written as }p, B'(da/a)®. The distance between the layers may, however.
change because of the dependence of u on x and y as well as that of z. This is easily seen by
imagining all the layers to be simultaneously rotated through an angle 6 about the y-axis.
say, in such a way that the period of the structure in the z-direction remains equal to a; the

t See G. Grinsteinand R. A. Pelcovits. Physical Review Letters 47,856, 1981; Physical Review A 26.915 (1982);
E. 1. Kats. Soviet Physics JETP 56. 791, 1983 1t1s necessary in the analysis to include the terms of the third and
fourth order in u in the expansion of the free energy
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distance between the layers, measured along the normal to them, becomes acos 6. For
small 6, the change in the distance between the layers is

da = a(cos—1) = —4ab%

Since at the same time the displacement in the rotation considered is u = constant
+ x tan 8 = constant + x6, we have

daja = —4(0u/ox)>.

In this form the expression is valid for any dependence of u on x; if u depends on y also,
(0u/0x)* becomes (V | u)?.
Taking this effect into account, we must write the free energy (45.6) as

é ou\? ou\? |

This expression will be used in the Problem.

PROBLEM

A layer of smectic with thickness h and plane boundaries parallel to the layer structure planes is uniformly
stretched in the z-direction perpendicular to the layer. Find the critical tension beyond which the layer structure
becomes unstable with respect to transverse perturbations (W. Helfrich 1971).¢

SoLuTION. A uniform stretching is a deformation u = yz, where the constant y > 0. To investigate the
stability, we put u = yz + du(x, z), where du is a small perturbation which satisfies the boundary conditions du
= Oforz = + }h (the xy-plane being taken in the middle of the layer). As far as the second-order terms, the total
elastic energy of the perturbation, per unit length in the y-direction, is

JéF,, dxdz = QJ.{ po B'(06u/dz)* — po B'y(06u/dx)? + K, (0*6u/dx?)} dx dz; (1

the term in y00u/dz disappears on integration over dz, because of the boundary conditions.
We shall consider perturbations having the form

éu = constant x cosk,zcosk,x, k,=nmn/h, n=12 ...,

i.e. a transverse modulation of the layer structure. The condition for the structure to be stable is that the energy (1)
be positive. Replacing all sin? and cos? factors in the integrand by their mean values 4, we obtain this condition in
the form

poB'(k,> —yk )+ K k* > 0.

The limit of stability as y increases is determined by the occurrence of a real root k2 of the trinomial on the left of
this inequality; complex k, do not satisfy the condition that the perturbation be finite throughout the xy-plane.
The first such root appears for the perturbation with n =1, and gives the critical value of y with the
corresponding k, = k :t

Yer = @n/h) (K, /poB'),  kee = (n/h) (po B'/K, )

§46. Dislocations in smectics

The concept of a dislocation in a smectic has the same significance as in an ordinary
crystal. The only difference is that, since the microscopic structure of smectics has one-
dimensional periodicity (in the z-direction), the Burgers vector of a dislocation is always

t This instability is analogous to that of a straight rod under compression (§21).

t The value of k_ determines only the wave number of the perturbation in the xy-plane, not the whole
symmetry of the deformation that occurs. To find the latter, it is necessary to go beyond the approximation of
equilibrium equations linear in én; the situation here is similar to that of convective instability in a plane-parallel
layer of liquid (see FM, §57, and J. M. Delrieu, Journal of Chemical Physics 60, 1081, 1974).
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along the z-axis and its magnitude is always an integral multiple of the period a of the
structure.

Bearing this in mind, we find that the deformation around a dislocation in a smectic is
described by the same formula (27.10), with an appropriate definition of the ¢lastic
modulus tensor 4,,,. For this purpose, we define the stress tensor o;, in the smectic in
accordance with the usual relationship

F, = 0,0, (46.1)

where F, is the “internal stress” body force (45.9). We also use the strain tensor
corresponding to the displacement u, = u; its non-zero components are

u,, = 0u/dz, u,, =%0u/dx, u, =3i0u/dy. (46.2)

The force (45.9) can be put in the form (46.1) if we express the stress tensor in terms of the
strain tensor by g = AigmUm, Witht

A’zxu = Po Blv Azxzx =1 - Kl A 1 j'zxzy = A'zxzz = lzyzz = 0» (463)

zyzy =

some of these are operators.
Formula (27.10) for the displacement u, = u becomes

u(r) = —Au.b Jn,—a—G(r—r’)df’ (46.4)
0x,
Sp
where G = G,, is the function (45.12).

Let us consider two particular cases: straight screw and edge dislocations. In the first
case, the dislocation axis is parallel to the Burgers vector (the z-axis). This case requires no
further calculations. It is evident a priori that the deformation u will depend only on the
coordinates x and y. The medium is isotropic in the xy-plane. We can therefore apply
immediately the results of §27, Problem 2, according to which

u = be/2n, (46.5)

where ¢ is the polar angle of the position vector in the xy-plane.

The edge dislocation case is more complicated (P. G. de Gennes 1972). Here the
dislocation axis is at right angles to the Burgers vector; suppose it to be along the y-axis.
Then the surface S, in the integral (46.4) can be taken as the right-hand half of the xy-
plane, and the vector n normal to it will be along the negative z-axis. The only non-zero
component A,,,, is 4,,,, = po B’, so that (46.4) becomes

«

= bpo B J {6G(r—r) dy

-

We substitute G from (45.12); the differentiation with respect to z gives a factor ik,, and
the integration with respect to y gives 274 (k,); the delta function is then eliminated by
integration with respect to k,. In the integral

@

f e~ *Xdx’

0

t The remaining components 4,,, can be chosen so that F, = F, = 0; these components do not occur in (46.4).
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in order to ensure convergence, we must treat k, as k, — i0. The result of integrating with
respect to x', ¥’ and k, is then

a0

exp (ik,x) dk,
= — — I(k —
ury = -=b J k—io ke Do

- Q0
where
@

k, exp (ik,z) dk,
1k, 2) = Imz

A =K,/poB'.

- @

This last integral is calculated by closing the contour of integration with an infinite
semicircle in the upper or lower half-plane (for z > 0 and z < 0 respectively) of the
complex variable k, and taking the residue at the pole k, = ik, ? or k, = —ilk %

I = i%icxp(_lklezn’

where the upper and lower signs correspond to z > 0 and z < 0. The displacement is thus

aQ©

b
u(x,z) = + — exp{—Ak.2|z|+ik,x}
4ni

- 0

X

k,—i0’

X

(46.6)

The spatial derivatives of this are, however, more interesting than the displacement
itself. The derivative du/dx is

0 b
g + - J exp{ — Ak, ?|z| +ik.x} dk,

—_ b 2
= i4—7—(n“zl)cxp{—x /4X]z|}. (46.7)

According to (46.6), the derivatives with respect to z and x are related by

0u/dz = + Ad%u/dx?,
whence
du

b

The deformation tends to zero exponentially as | x | — oo, but much more slowly (by a
power law) as | z| — 0.

§47. Equations of motion of smectics

The mechanics of smectics has in common with that of nematics the fact that both
involve hydrodynamics with extra variables in comparison with an ordinary liquid. For
nematics, the variable concerned is the director n; for smectics it is the displacement u of
the layers (P. Martin,O. Parodiand P. S. Pershan 1972). The latter point needs elucidation.
The velocity is defined in hydrodynamics as the momentum of unit mass of matter. Its
component v, need not, in the present case, be equal to du/dt. In a smectic, mass transfer (in
the z-direction) can take place not only by the deformation of layers but also by the
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percolation of matter through a one-dimensional structure at rest, as described for
cholesterics in §44. This phenomenon is not specific to liquid crystals; a similar effect can
occur in solid crystals, where it is due to diffusion of defects (see the first footnote to §22).
In smectics, however, it cannot in principle be eliminated by increased blurring of the
periodic structure with a large number of defects (vacancies) and a greater mobility of the
molecules.

In adiabatic motion, each element of the liquid transfers its constant entropy s (per unit
mass); if at some initial instant s is constant throughout the medium, it remains so. Since
the condition of constant s relates to the entropy per unit mass, it will be convenient to use
the internal energy of the medium per unit mass also; this will be denoted by ¢. For a
deformed smectic, ¢ is given by a formula analogous to (45.1):

£ =¢—¢o(5)
3(A/po®) (p = po)* +(C/po) (p — po) 0u/dz +5 B(0u/0z)* + 4 (K, /po) (A | u)?, (47.1)

where p, is the density of the undeformed medium; the coefficients A, B, C here are not the
same as in (45.1), being now the adiabatic values of the elastic moduli (assumed to be
expressed as functions of s), not the isothermal ones as in (45.1). The isothermal and
adiabatic values of K are equal, for the same reasons as in nematics; see the end of §37.1

The volume of unit mass is 1/p. The thermodynamic relation for the energy differential
is therefore

de = Tds—pdV
= Tds+pdp/pt.
The pressure in the medium can therefore be found by differentiating the expression (47.1):
p = p(3e/0p), = A(p — po) + poCou/oz. (47.2)

The sequence of operations in constructing the equations of motion of smectics is then
very similar to the derivation of those of nematics in §41. To emphasize this analogy, we
shall, as in §41, use the energy E = pe and the entropy S = ps per unit volume.

The equation of continuity has the usual form}

dp/dt +div (pv) = 0. (47.3)
The dynamical equation for the velocity must have the form
pdv;/dt = 6,0, (47.4)

cf. (41.7). The form of the stress tensor will be established later.
One further equation arises from the presence of the additional variable, and expresses
the difference between v, and éu/ct:

Cu/dt —v, = N. (47.5)

The quantity — N gives the rate of percolation, i.e. the velocity of the liquid relative to the

t Strictly speaking. ¢u/ ¢z in (47.1) should be written as ¢u;/éz — dq(s), where d(s) is the value of Pu, ¢z for
entropy s in the absence of external forces. Considering the motion with a given s, we can take as the undeformed
state this particular state and put d,(s) = 0. It should be emphasized, however, that we then cannot, for example,
differentiate the expression (47.1) with respect to s in order to determine the temperature from T = (Ce.(s)p.

+ Although we are ultimately concerned only with the linearized equations of motion, the linearization will
not be performed at cvery stage of the derivation. since this would complicate the formulae.
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one-dimensional lattice; it is a transport quantity, and an expression for it will be derived
later.

Lastly, the entropy equation, taking account of dissipative processes in the medium, has
the form (41.8):

%j— +div (Sv+q/T) = 2R/T. (47.6)

As in §41, we calculate the time derivative of the total energy per unit volume of the
medium, which appears in the energy conservation equation (41.11). The only difference is
in the form of the last term in (41.12): we now havet

3E, 3E, \ 8 ou du
Tha) 2%k hitd
(az ),,‘s (6(6,14)),,‘362 at ‘(Al“)(A* az)

d
=_ha_':+div{...}; (47.7)
as in §41, the total divergence terms are not written out. The notation here is
0 [ OE,
= —-K, A2
oz (a(a,u)>,,,s 1oL
02 a(p —
=p036_:+c (paz”°)—l<laju. (47.8)

If h is regarded as the z-component of a vector h = nh (where n is a unit vector in the z-
direction), we can easily see that this vector may be written as a divergence:
h; = 8,0,", 47.9)
where the symmetrical tensor ¢, has the components
0" =0, =K A, 0u/oz, ¢, = peBdu/dz+C(p— p,), @1.10)
0.." = —K,A,0u/ox, 0, =—K,A, du/dy, 6, =0.

Substituting in (47.7) du/ot from (47.5) and again separating a total divergence in one
term, we can write

(E,/3t), 5= —hN — 0,0, +div{ ... }
= —hN+qu,}(’)+diV{ e }

This expression differs from (41.17) only in the significance of h and N.} Proceeding as in
§41, we obtain the same expression (41.21) for the dissipative function:

2R = oik'vu+Nh—(l/T)q'VT, (47.11)
where o, is the viscous part of the stress tensor:

O = — pa,-. + aik(’) + G'ig’. (4712)

t Here and henceforward, we neglect the change in the elastic moduli within the medium. .
1 Andin the absence of the term v, (6, E), 5. Such a term would, however, occur in this case also as a third-order
small quantity, negligible in comparison with the second-order ones.
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The dynamical equation (47.4) with this stress tensor is, after linearization, omitting the
term (v-V)v,
PoOv;/0t = —0;,p+ h; + 0,0;/, (47.13)

the vector h = nh being defined by (47.8).

The viscous part a;,’ of the stress tensor, the heat flux q and the percolation rate N
(thermodynamic fluxes) are, as usual, given by expressions linear in the thermodynamic
forces —v,/T, (1/T72)0,T and — h/T; the coefficients in these expressions satisfy relations
which follow from Onsager’s pﬁnciple. We shall not repeat the derivation (cf. §§42 and
44), but simply give the result, assuming that (as is usually the case) the smectic has a centre
of inversion; this has not so far been assumed.

The viscous part of the stress tensor is then given by the same expression (42.4) as for
nematics, with n in the z-direction. The heat flux and the percolation rate are

q, = — Kk, 0T/oz +uh, q, = —k, VT,

(47.14)

N = A,h— (4/T)0T/0z;

since the dissipative function is positive, we must have
Kjs K1y 4, >0, ul < TA,x. 47.15)

Percolation makes possible in smectics an effect similar to that described for
cholesterics at the end of §44. If the periodic structure of the smectic is in some way fixed in
space, there can be a uniform steady flow in the z-direction. It follows from (47.13) that for
such a flow dp/dz = h, and from (47.5), with N from (47.14),

v, = —A,h = — A,dp/dz. (47.16)

There is one important remark to be made regarding the above discussion of the kinetic
coefficients in smectics. The divergence of the fluctuations in smectics (§46) has a
particularly marked effect in transport phenomena and may substantially alter their
nature.t

§48. Sound in smectics

In ordinary liquids, and in nematic liquid crystals, there is only one branch of weakly
damped acoustic vibrations, namely longitudinal sound waves. In solid crystals and
amorphous solids, there are three acoustic branches of the linear dispersion relation (§§22,
23). One-dimensional crystals, i.e. smectics, occupy once again an intermediate position,
having two acoustic branches (P. G. de Gennes 1969).

The attenuation coefficients of these waves are of no interest in the present discussion,
and in order to determine just their speed of propagation we shall neglect all dissipative
terms in the equations of motion. The complete set of linearized equations comprises: the
continuity equation

dp'/ot+pdivy =0 (48.1)

(here and henceforward, we omit the subscript zero in po; p’ and p’ are the variable parts of
the density and pressure); equation (47.16), which reduces to

v, = du/or, (48.2)

t See E. I. Kats and V. V. Lebedev, Soviet Physics JETP 58, 1172, 1984,
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there being no percolation; and the dynamical equation (47.13),

pov/ot = —Vp' + nh, (48.3)
where, according to (47.2),

p = Ap' + pCou/oz. (48.4)

In (47.8) for h, the term K, A | 2u, which contains higher-order derivatives, is to be omitted,
since it is of too high an order in the wave number k, which in acoustic waves is to be
regarded as a small quantity:

h = pBd*u/dz% + Cop'/0z. (48.5)

In actual smectics, B and C are usually small in comparison with 4. Under these
conditions, which will be assumed to hold, the nature of the two acoustic branches in
smectics is more readily perceived.

If we neglect in the equations of motion all terms containing the small coefficients Band
C, they reduce to those of an ordinary liquid with the equation of state p' = Ap’, i.e. with
compressibility (0p’/dp’); = A. The corresponding vibrations are ordinary sound waves—
longitudinal compression and rarefaction waves in the medium. Their speed of
propagation is

¢, =./4 (48.6)

and is, in the approximation considered, independent of the direction.

The speed ¢, of propagation of waves in the second acoustic branch is, as we shall see,
much less than ¢,: w/k = ¢, < c,. As regards these vibrations, therefore, the medium may
be treated as incompressible; see the first footnote to §43. The continuity equation then
reduces to the incompressibility condition div v = 0; in (48.5), we omit the second term, so
that (48.3) becomes

pdv/ot = — Vp' +npBo*u/dz?. (48.7)

Differentiating the z-component of this equation with respect to z and substituting
v, = du/0t gives

pd26/0t* = —0*p’'/0z* + pBd*5/022,
where 6 = 0u/0z. Taking the divergence of (48.7) gives, with the incompressibility

condition,
Ap' = pBd*6/9z2.

Lastly, eliminating p’ from these two equations, we obtain one equation for é:
0¥\8/0t* = B{— 0%5/9z* + 8% 1\ 6/02%). (48.8)

The dependence of the displacement u on the coordinate z means that the distances a
between adjacent layers vary: da = adu/dz, and the relative change in a is given by
& = 0u/dz. Thus (48.8) describes the propagation of a transverse (k - v = 0) wave in which
the distances between the layers oscillate at constant density. For a plane wave, in which
a exp (ik -r —iwt), (48.8) gives

w’k? = Bk %k,?
and hence the velocity of propagation
¢, = /Bsinfcosb, (48.9)
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where 6 is the angle between k and the z-axis. The velocity is anisotropic, and is zero for
propagation either parallel to the z-axis (8 = 0) or in the xy-plane (6 = n/2).

PROBLEM
Find the speed of propagation of acoustic waves in smectics for any relation between the moduli 4, Band C.

SoLuTioN. Differentiating (48.3) with respect to t and eliminating dp’/0t and du/dt by means of (48.1) and
(48.2), we find the equation

3%vjat* = AV divv —CVav,/dz + n[ — Ca div v/0z + Bdv,/0z%).
For a plane wave, in which v oc exp (ik - r — iwt), this becomes
—w?v = — Ak(k - v) + Ckk,v, + n[Ck,(k - v) — Bk %v,]. 1))

Let the wave vector k be in the xz-plane. Then it follows from (1) that v is in the same plane, its x and z
components being given by the two equations

v,[c? — (A + B—2C)cos?*0] + v,(C — A)sinf cosf = 0,
v,(C — A)sinb cos 0 + v, [c?— Asin?0] =0,

where ¢ = w/k is the speed of propagation of the wave, and 0 the angle between k and the z-axis. Equating to zero
the determinant of this system gives the dispersion relation

c*—c[A+(B-2C)xos?0] +(AB - C?*sin? 0 cos?0 = 0.
The larger and smaller roots of this quadratic in c? give the speeds ¢, and c,. In particular,
¢, = A when 0=in,
¢, =(A+B-2C) when 6=0.

The speed c, in these directions is zero.
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elastic properties 172-7
equations of motion 179-82

free energy 174 Velocity of sound
sound in 1824 longitudinal 88
Splay 145 transverse 88
Stability of elastic systems 56, 83—6 Vibration
Strain tensor 2-3 anharmonic  104-7
in cylindrical polar coordinates 3 of rods and plates 99-104
diagonalization of 2 torsional 101
principal axes of 2 Viscosity
principal values of 2 high, in fluids 142-3
in spherical polar coordinates 3 of solids 135-7
in terms of stress tensor 11, 13 tensor 137

Stress function 18, 47
Stress, plane 47n.
Stress tensor  3-7, 10
mean value of 7
reactive part of 162n.
in terms of strain tensor 10, 13, 32
Stresses Young’s modulus 12
concentration of 22, 50 for cubic crystals 37

Waves see Elastic waves
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