3 Relativistic energy and momentum

Questions marked with an asterisk (*) are more difficult and not mandatory.

- 1. Photons are particles of zero mass. Find the transformation rule of the photon energy and momentum under a boost with the velocity V parallel to the photon momentum. Express the result in terms of the rapidity parameter.
- 2. The mass of the deuterium atom (D) is 1.8756 GeV ($1\text{GeV} = 1.602 \cdot 10^{-10}\text{J}$), while the mass of the helium atom (⁴He) is 3.7284 GeV. Find the energy released in the conversion of 1 g of deuterium into helium (nuclear fusion).
- 3. A particle of mass M moving with the velocity V decays into two particles of masses m_1 and m_2 . Find the relation between the energies of the resulting particles and the directions of their velocities.
- 4. Consider the elastic scattering of two particles of masses m_1 and m_2 from the center-ofmomentum frame. Let $\vec{p_1}$, $\vec{p_2}$ be the three-momenta before the scattering and $\vec{p_1}$, $\vec{p_2}$ the three-momenta after the scattering process. Show that all momenta lie on a circle, i.e. are coplanar and of equal norm.
- 5. A moving particle of mass m_1 collides with the particle at rest of mass m_2 . After the collision the velocity of the particle 1 changes the direction by the angle θ . Demonstrate that in the case $m_1 > m_2$ the angle θ cannot exceed some maximum value. Find this value. Do the same calculation in Galilean relativity and comment on the result.
- 6. Consider the collision of the preceding question when the incident particle is massless. Find the relation between the energy of the incident particle after collision and its scattering angle.
- 7. Consider the non-relativistic head-on collision of a light particle of mass m with a heavy one of mass M at rest. Show that the energy transferred to the heavy particle, measured in units of the energy of the incident particle, goes to zero in the limit $m/M \rightarrow 0$. Demonstrate that this is not the case in the relativistic case.
- 8. Protons present in cosmic rays may interact with the photons of the cosmic microwave background. Consider a head-on collision (zero impact parameter) of a proton with a photon of the energy 2.6×10^{-4} eV. What minimum energy of the proton is needed to produce a π^0 -meson in the reaction $p + \gamma \rightarrow p + \pi^0$ (the masses of particles are $m_p c^2 = 0.938$ GeV, $m_{\pi}c^2 = 0.135$ GeV, $m_{\gamma} = 0$)?
- *9. A particle of mass M which is at rest decays into three particles with masses m_1 , m_2 and m_3 . Find the maximum energy which can be carried away by one of these particles.